Compare commits
3 Commits
0519ae9336
...
10d87aefd3
Author | SHA1 | Date | |
---|---|---|---|
10d87aefd3 | |||
05db89e8c2 | |||
c40ffcf84b |
77
strategy_evaluation/AbstractTreeLearner.py
Normal file
77
strategy_evaluation/AbstractTreeLearner.py
Normal file
@ -0,0 +1,77 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
class AbstractTreeLearner:
|
||||
LEAF = -1
|
||||
NA = -1
|
||||
|
||||
def author(self):
|
||||
return 'felixm' # replace tb34 with your Georgia Tech username
|
||||
|
||||
def create_node(self, factor, split_value, left, right):
|
||||
return np.array([(factor, split_value, left, right), ],
|
||||
dtype='|i4, f4, i4, i4')
|
||||
|
||||
def query_point(self, point):
|
||||
node_index = 0
|
||||
while self.rel_tree[node_index][0] != self.LEAF:
|
||||
node = self.rel_tree[node_index]
|
||||
split_factor = node[0]
|
||||
split_value = node[1]
|
||||
if point[split_factor] <= split_value:
|
||||
# Recurse into left sub-tree.
|
||||
node_index += node[2]
|
||||
else:
|
||||
node_index += node[3]
|
||||
v = self.rel_tree[node_index][1]
|
||||
return v
|
||||
|
||||
def query(self, points):
|
||||
"""
|
||||
@summary: Estimate a set of test points given the model we built.
|
||||
@param points: should be a numpy array with each row corresponding to a specific query.
|
||||
@returns the estimated values according to the saved model.
|
||||
"""
|
||||
query_point = lambda p: self.query_point(p)
|
||||
r = np.apply_along_axis(query_point, 1, points)
|
||||
return r
|
||||
|
||||
def build_tree(self, xs, y):
|
||||
"""
|
||||
@summary: Build a decision tree from the training data.
|
||||
@param dataX: X values of data to add
|
||||
@param dataY: the Y training values
|
||||
"""
|
||||
assert(xs.shape[0] == y.shape[0])
|
||||
assert(xs.shape[0] > 0) # If this is 0 something went wrong.
|
||||
|
||||
if xs.shape[0] <= self.leaf_size:
|
||||
value = np.mean(y)
|
||||
if value < -0.3:
|
||||
value = -1
|
||||
elif value > 0.3:
|
||||
value = 1
|
||||
else:
|
||||
value = 0
|
||||
return self.create_node(self.LEAF, value, self.NA, self.NA)
|
||||
|
||||
if np.all(y[0] == y):
|
||||
return self.create_node(self.LEAF, y[0], self.NA, self.NA)
|
||||
|
||||
i, split_value = self.get_i_and_split_value(xs, y)
|
||||
select_l = xs[:, i] <= split_value
|
||||
select_r = xs[:, i] > split_value
|
||||
lt = self.build_tree(xs[select_l], y[select_l])
|
||||
rt = self.build_tree(xs[select_r], y[select_r])
|
||||
root = self.create_node(i, split_value, 1, lt.shape[0] + 1)
|
||||
root = np.concatenate([root, lt, rt])
|
||||
return root
|
||||
|
||||
def addEvidence(self, data_x, data_y):
|
||||
"""
|
||||
@summary: Add training data to learner
|
||||
@param dataX: X values of data to add
|
||||
@param dataY: the Y training values
|
||||
"""
|
||||
self.rel_tree = self.build_tree(data_x, data_y)
|
||||
|
47
strategy_evaluation/BagLearner.py
Normal file
47
strategy_evaluation/BagLearner.py
Normal file
@ -0,0 +1,47 @@
|
||||
import numpy as np
|
||||
from AbstractTreeLearner import AbstractTreeLearner
|
||||
|
||||
|
||||
class BagLearner(AbstractTreeLearner):
|
||||
def __init__(self, learner, bags=9, boost=False, verbose=False, kwargs={}):
|
||||
self.learner = learner
|
||||
self.verbose = verbose
|
||||
self.bags = bags
|
||||
self.learners = [learner(**kwargs) for _ in range(bags)]
|
||||
|
||||
def get_bag(self, data_x, data_y):
|
||||
num_items = int(data_x.shape[0] * 0.5) # 50% of samples
|
||||
bag_x, bag_y = [], []
|
||||
for _ in range(num_items):
|
||||
i = np.random.randint(0, data_x.shape[0])
|
||||
bag_x.append(data_x[i,:])
|
||||
bag_y.append(data_y[i])
|
||||
return np.array(bag_x), np.array(bag_y)
|
||||
|
||||
def addEvidence(self, data_x, data_y):
|
||||
"""
|
||||
@summary: Add training data to learner
|
||||
@param dataX: X values of data to add
|
||||
@param dataY: the Y training values
|
||||
"""
|
||||
for learner in self.learners:
|
||||
x, y = self.get_bag(data_x, data_y)
|
||||
learner.addEvidence(x, y)
|
||||
|
||||
def query(self, points):
|
||||
"""
|
||||
@summary: Estimate a set of test points given the model we built.
|
||||
@param points: numpy array with each row corresponding to a query.
|
||||
@returns the estimated values according to the saved model.
|
||||
"""
|
||||
def to_discret(m):
|
||||
print(m)
|
||||
if m < -0.5:
|
||||
return -1
|
||||
elif m > 0.5:
|
||||
return 1
|
||||
return 0
|
||||
m = np.mean([l.query(points) for l in self.learners], axis=0)
|
||||
return m
|
||||
# return np.apply_along_axis(to_discret, 1, m)
|
||||
|
@ -36,18 +36,21 @@ class ManualStrategy:
|
||||
print(volume)
|
||||
|
||||
def macd_strat(self, macd, orders):
|
||||
"""Strategy based on MACD cross."""
|
||||
|
||||
def strat(ser):
|
||||
m = macd.loc[ser.index]
|
||||
prev_macd, prev_signal = m.iloc[0]
|
||||
cur_macd, cur_signal = m.iloc[1]
|
||||
prev_macd, prev_signal, _ = m.iloc[0]
|
||||
cur_macd, cur_signal, _ = m.iloc[1]
|
||||
shares = 0
|
||||
if cur_macd < -1 and prev_macd < prev_signal and cur_macd > cur_signal:
|
||||
if cur_macd < -1 and prev_macd < prev_signal \
|
||||
and cur_macd > cur_signal:
|
||||
if self.holding == 0:
|
||||
shares = 1000
|
||||
elif self.holding == -1000:
|
||||
shares = 2000
|
||||
elif cur_macd > 1 and prev_macd > prev_signal and cur_macd < cur_signal:
|
||||
elif cur_macd > 1 and prev_macd > prev_signal \
|
||||
and cur_macd < cur_signal:
|
||||
if self.holding == 0:
|
||||
shares = -1000
|
||||
elif self.holding == 1000:
|
||||
@ -58,6 +61,8 @@ class ManualStrategy:
|
||||
orders['Shares'] = orders['Shares'].rolling(2).apply(strat)
|
||||
|
||||
def three_indicator_strat(self, macd, rsi, price_sma, orders):
|
||||
"""Strategy based on three indicators. Thresholds selected based on
|
||||
scatter plots."""
|
||||
def strat(row):
|
||||
shares = 0
|
||||
_, _, macd_diff = macd.loc[row.name]
|
||||
@ -87,7 +92,7 @@ class ManualStrategy:
|
||||
def testPolicy(self, symbol="IBM",
|
||||
sd=dt.datetime(2009, 1, 1),
|
||||
ed=dt.datetime(2010, 1, 1),
|
||||
sv=10000):
|
||||
sv=10000, macd_strat=False):
|
||||
|
||||
self.holding = 0
|
||||
df = util.get_data([symbol], pd.date_range(sd, ed))
|
||||
@ -102,7 +107,8 @@ class ManualStrategy:
|
||||
rsi = indicators.rsi(df, symbol)
|
||||
price_sma = indicators.price_sma(df, symbol, [8])
|
||||
|
||||
# self.macd_strat(macd, orders)
|
||||
self.three_indicator_strat(macd, rsi, price_sma, orders)
|
||||
if macd_strat:
|
||||
self.macd_strat(macd, orders)
|
||||
else:
|
||||
self.three_indicator_strat(macd, rsi, price_sma, orders)
|
||||
return orders
|
||||
|
||||
|
30
strategy_evaluation/RTLearner.py
Normal file
30
strategy_evaluation/RTLearner.py
Normal file
@ -0,0 +1,30 @@
|
||||
import numpy as np
|
||||
from AbstractTreeLearner import AbstractTreeLearner
|
||||
|
||||
|
||||
class RTLearner(AbstractTreeLearner):
|
||||
|
||||
def __init__(self, leaf_size = 1, verbose = False):
|
||||
self.leaf_size = leaf_size
|
||||
self.verbose = verbose
|
||||
|
||||
def get_i_and_split_value(self, xs, y):
|
||||
"""
|
||||
@summary: Pick a random i and split value.
|
||||
|
||||
Make sure that not all X are the same for i and also pick
|
||||
different values to average the split_value from.
|
||||
"""
|
||||
i = np.random.randint(0, xs.shape[1])
|
||||
while np.all(xs[0,i] == xs[:,i]):
|
||||
i = np.random.randint(0, xs.shape[1])
|
||||
|
||||
# I don't know about the performance of this, but at least it
|
||||
# terminates reliably. If the two elements are the same something is
|
||||
# wrong.
|
||||
a = np.array(list(set(xs[:, i])))
|
||||
r1, r2 = np.random.choice(a, size = 2, replace = False)
|
||||
assert(r1 != r2)
|
||||
split_value = (r1 + r2) / 2.0
|
||||
return i, split_value
|
||||
|
@ -1,88 +1,94 @@
|
||||
"""
|
||||
Template for implementing StrategyLearner (c) 2016 Tucker Balch
|
||||
|
||||
Copyright 2018, Georgia Institute of Technology (Georgia Tech)
|
||||
Atlanta, Georgia 30332
|
||||
All Rights Reserved
|
||||
|
||||
Template code for CS 4646/7646
|
||||
|
||||
Georgia Tech asserts copyright ownership of this template and all derivative
|
||||
works, including solutions to the projects assigned in this course. Students
|
||||
and other users of this template code are advised not to share it with others
|
||||
or to make it available on publicly viewable websites including repositories
|
||||
such as github and gitlab. This copyright statement should not be removed
|
||||
or edited.
|
||||
|
||||
We do grant permission to share solutions privately with non-students such
|
||||
as potential employers. However, sharing with other current or future
|
||||
students of CS 7646 is prohibited and subject to being investigated as a
|
||||
GT honor code violation.
|
||||
|
||||
-----do not edit anything above this line---
|
||||
|
||||
Student Name: Tucker Balch (replace with your name)
|
||||
GT User ID: tb34 (replace with your User ID)
|
||||
GT ID: 900897987 (replace with your GT ID)
|
||||
"""
|
||||
|
||||
import datetime as dt
|
||||
import pandas as pd
|
||||
import util as ut
|
||||
import util
|
||||
import indicators
|
||||
from BagLearner import BagLearner
|
||||
from RTLearner import RTLearner
|
||||
|
||||
|
||||
class StrategyLearner(object):
|
||||
|
||||
# constructor
|
||||
def __init__(self, verbose = False, impact=0.0, commission=0.0):
|
||||
def __init__(self, verbose=False, impact=0.0, commission=0.0, testing=False):
|
||||
self.verbose = verbose
|
||||
self.impact = impact
|
||||
self.commission = commission
|
||||
self.testing = testing
|
||||
|
||||
# this method should create a QLearner, and train it for trading
|
||||
def addEvidence(self, symbol = "IBM", \
|
||||
sd=dt.datetime(2008,1,1), \
|
||||
ed=dt.datetime(2009,1,1), \
|
||||
sv = 10000):
|
||||
|
||||
# add your code to do learning here
|
||||
|
||||
# example usage of the old backward compatible util function
|
||||
syms=[symbol]
|
||||
dates = pd.date_range(sd, ed)
|
||||
prices_all = ut.get_data(syms, dates) # automatically adds SPY
|
||||
prices = prices_all[syms] # only portfolio symbols
|
||||
# prices_SPY = prices_all['SPY'] # only SPY, for comparison later
|
||||
if self.verbose: print(prices)
|
||||
|
||||
# example use with new colname
|
||||
volume_all = ut.get_data(syms, dates, colname = "Volume") # automatically adds SPY
|
||||
def _get_volume(self):
|
||||
"""For reference."""
|
||||
volume_all = ut.get_data(syms, dates, colname="Volume")
|
||||
volume = volume_all[syms] # only portfolio symbols
|
||||
# volume_SPY = volume_all['SPY'] # only SPY, for comparison later
|
||||
if self.verbose: print(volume)
|
||||
if self.verbose:
|
||||
print(volume)
|
||||
|
||||
# this method should use the existing policy and test it against new data
|
||||
def testPolicy(self, symbol = "IBM", \
|
||||
sd=dt.datetime(2009,1,1), \
|
||||
ed=dt.datetime(2010,1,1), \
|
||||
sv = 10000):
|
||||
def _add_indicators(self, df, symbol):
|
||||
"""Add indicators for learning to DataFrame."""
|
||||
df.drop(columns=["SPY"], inplace=True)
|
||||
indicators.macd(df, symbol)
|
||||
indicators.rsi(df, symbol)
|
||||
indicators.price_sma(df, symbol, [8])
|
||||
indicators.price_delta(df, symbol, 3)
|
||||
df.dropna(inplace=True)
|
||||
|
||||
# here we build a fake set of trades
|
||||
# your code should return the same sort of data
|
||||
dates = pd.date_range(sd, ed)
|
||||
prices_all = ut.get_data([symbol], dates) # automatically adds SPY
|
||||
trades = prices_all[[symbol,]] # only portfolio symbols
|
||||
# trades_SPY = prices_all['SPY'] # only SPY, for comparison later
|
||||
trades.values[:,:] = 0 # set them all to nothing
|
||||
trades.values[0,:] = 1000 # add a BUY at the start
|
||||
trades.values[40,:] = -1000 # add a SELL
|
||||
trades.values[41,:] = 1000 # add a BUY
|
||||
trades.values[60,:] = -2000 # go short from long
|
||||
trades.values[61,:] = 2000 # go long from short
|
||||
trades.values[-1,:] = -1000 #exit on the last day
|
||||
if self.verbose: print(type(trades)) # it better be a DataFrame!
|
||||
if self.verbose: print(trades)
|
||||
if self.verbose: print(prices_all)
|
||||
return trades
|
||||
def addEvidence(self, symbol="IBM",
|
||||
sd=dt.datetime(2008, 1, 1),
|
||||
ed=dt.datetime(2009, 1, 1),
|
||||
sv=10000):
|
||||
|
||||
self.indicators = ['macd_diff', 'rsi', 'price_sma_8']
|
||||
df = util.get_data([symbol], pd.date_range(sd, ed))
|
||||
self._add_indicators(df, symbol)
|
||||
|
||||
def classify_y(row):
|
||||
if row > 0.1:
|
||||
return 1
|
||||
elif row < -0.1:
|
||||
return -1
|
||||
return 0
|
||||
|
||||
self.learner = RTLearner(leaf_size = 7)
|
||||
# self.learner = BagLearner(RTLearner, 5, {'leaf_size': 5})
|
||||
data_x = df[self.indicators].to_numpy()
|
||||
y = df['pct_3'].apply(classify_y)
|
||||
self.learner.addEvidence(data_x, y.to_numpy())
|
||||
return y
|
||||
|
||||
def strat(self, data_y, orders):
|
||||
self.holding = 0
|
||||
|
||||
def strat(row):
|
||||
y = int(data_y.loc[row.name][0])
|
||||
shares = 0
|
||||
if self.holding == 0 and y == 1:
|
||||
shares = 1000
|
||||
elif self.holding == -1000 and y == 1:
|
||||
shares = 2000
|
||||
elif self.holding == 0 and y == -1:
|
||||
shares = -1000
|
||||
elif self.holding == 1000 and y == -1:
|
||||
shares = -2000
|
||||
self.holding += shares
|
||||
return shares
|
||||
|
||||
orders["Shares"] = orders.apply(strat, axis=1)
|
||||
|
||||
def testPolicy(self, symbol="IBM",
|
||||
sd=dt.datetime(2009, 1, 1),
|
||||
ed=dt.datetime(2010, 1, 1),
|
||||
sv=10000):
|
||||
df = util.get_data([symbol], pd.date_range(sd, ed))
|
||||
self._add_indicators(df, symbol)
|
||||
data_x = df[self.indicators].to_numpy()
|
||||
data_y = pd.DataFrame(index=df.index, data=self.learner.query(data_x))
|
||||
|
||||
orders = pd.DataFrame(index=df.index)
|
||||
orders["Symbol"] = symbol
|
||||
orders["Order"] = ""
|
||||
orders["Shares"] = 0
|
||||
self.strat(data_y, orders)
|
||||
if self.testing:
|
||||
return orders
|
||||
else:
|
||||
return orders[["Shares"]]
|
||||
|
||||
if __name__=="__main__":
|
||||
print("One does not simply think up a strategy")
|
||||
|
@ -9,6 +9,7 @@ import matplotlib.pyplot as plt
|
||||
from matplotlib.widgets import MultiCursor
|
||||
from BenchmarkStrategy import BenchmarkStrategy
|
||||
from ManualStrategy import ManualStrategy
|
||||
from StrategyLearner import StrategyLearner
|
||||
|
||||
|
||||
def plot_indicators(symbol, df):
|
||||
@ -16,7 +17,6 @@ def plot_indicators(symbol, df):
|
||||
|
||||
price_sma = indicators.price_sma(df, symbol, [8])
|
||||
bb = indicators.bollinger_band(df, symbol)
|
||||
sma = indicators.sma(df, symbol, [8])
|
||||
rsi = indicators.rsi(df, symbol)
|
||||
macd = indicators.macd(df, symbol).copy()
|
||||
|
||||
@ -57,41 +57,81 @@ def visualize_correlations(symbol, df):
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
def experiment1():
|
||||
symbol = "JPM"
|
||||
start_value = 10000
|
||||
sd = dt.datetime(2008, 1, 1) # in-sample
|
||||
ed = dt.datetime(2009, 12, 31) # in-sample
|
||||
# sd = dt.datetime(2010, 1, 1) # out-sample
|
||||
# ed = dt.datetime(2011, 12, 31) # out-sample
|
||||
def compare_manual_strategies(symbol, sv, sd, ed):
|
||||
|
||||
df = util.get_data([symbol], pd.date_range(sd, ed))
|
||||
df.drop(columns=["SPY"], inplace=True)
|
||||
|
||||
# visualize_correlations(symbol, df)
|
||||
# plot_indicators(symbol, df)
|
||||
|
||||
bs = BenchmarkStrategy()
|
||||
orders = bs.testPolicy(symbol, sd, ed, start_value)
|
||||
df["Benchmark"] = marketsim.compute_portvals(orders, start_value)
|
||||
orders = bs.testPolicy(symbol, sd, ed, sv)
|
||||
df["Benchmark"] = marketsim.compute_portvals(orders, sv)
|
||||
df["Orders Benchmark"] = orders["Shares"]
|
||||
|
||||
ms = ManualStrategy()
|
||||
orders = ms.testPolicy(symbol, sd, ed, start_value)
|
||||
df["Manual"] = marketsim.compute_portvals(orders, start_value)
|
||||
df["Orders Manual"] = orders["Shares"]
|
||||
df["Holding Manual"] = orders["Shares"].cumsum()
|
||||
orders = ms.testPolicy(symbol, sd, ed, sv, macd_strat=True)
|
||||
df["MACD Strat"] = marketsim.compute_portvals(orders, sv)
|
||||
df["Orders MACD"] = orders["Shares"]
|
||||
# df["Holding Manual"] = orders["Shares"].cumsum()
|
||||
|
||||
orders = ms.testPolicy(symbol, sd, ed, sv)
|
||||
df["Three Strat"] = marketsim.compute_portvals(orders, sv)
|
||||
df["Orders Three"] = orders["Shares"]
|
||||
|
||||
fig, ax = plt.subplots(3, sharex=True)
|
||||
df[[symbol]].plot(ax=ax[0])
|
||||
df[["Benchmark", "Manual"]].plot(ax=ax[1])
|
||||
df[["Orders Benchmark", "Orders Manual"]].plot(ax=ax[2])
|
||||
df[["Benchmark", "MACD Strat", "Three Strat"]].plot(ax=ax[1])
|
||||
df[["Orders Benchmark", "Orders MACD", "Orders Three"]].plot(ax=ax[2])
|
||||
|
||||
for a in ax:
|
||||
a.grid()
|
||||
multi = MultiCursor(fig.canvas, ax, color='r', lw=0.5)
|
||||
MultiCursor(fig.canvas, ax, color='r', lw=0.5)
|
||||
|
||||
# plt.show()
|
||||
fig.set_size_inches(10, 8, forward=True)
|
||||
plt.savefig('figure_1.png', dpi=fig.dpi)
|
||||
|
||||
|
||||
def experiment1():
|
||||
symbol = "JPM"
|
||||
sv = 10000
|
||||
sd = dt.datetime(2008, 1, 1) # in-sample
|
||||
ed = dt.datetime(2009, 12, 31) # in-sample
|
||||
sd_out = dt.datetime(2010, 1, 1) # out-sample
|
||||
ed_out = dt.datetime(2011, 12, 31) # out-sample
|
||||
|
||||
df = util.get_data([symbol], pd.date_range(sd, ed_out))
|
||||
df.drop(columns=["SPY"], inplace=True)
|
||||
|
||||
# visualize_correlations(symbol, df)
|
||||
# plot_indicators(symbol, df)
|
||||
# compare_manual_strategies(symbol, sv, sd, ed)
|
||||
|
||||
bs = BenchmarkStrategy()
|
||||
orders = bs.testPolicy(symbol, sd_out, ed_out, sv)
|
||||
df["Benchmark"] = marketsim.compute_portvals(orders, sv)
|
||||
df["Orders Benchmark"] = orders["Shares"]
|
||||
|
||||
sl = StrategyLearner(testing=True)
|
||||
sl.addEvidence(symbol, sd, ed, sv)
|
||||
orders = sl.testPolicy(symbol, sd_out, ed_out, sv)
|
||||
df["SL"] = marketsim.compute_portvals(orders, sv)
|
||||
df["Orders SL"] = orders["Shares"]
|
||||
|
||||
fig, ax = plt.subplots(3, sharex=True)
|
||||
df[[symbol]].plot(ax=ax[0])
|
||||
df[["Benchmark", "SL"]].plot(ax=ax[1])
|
||||
df[["Orders Benchmark", "Orders SL"]].plot(ax=ax[2])
|
||||
|
||||
for a in ax:
|
||||
a.grid()
|
||||
MultiCursor(fig.canvas, ax, color='r', lw=0.5)
|
||||
plt.show()
|
||||
# plt.savefig('figure_1.png')
|
||||
|
||||
# For debugging the classification learner:
|
||||
# df["y_train"] = sl.addEvidence(symbol, sd, ed, sv)
|
||||
# df["y_query"] = sl.testPolicy(symbol, sd, ed, sv)
|
||||
# df[["y_train", "y_query"]].plot(ax=ax[1])
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Binary file not shown.
Before Width: | Height: | Size: 68 KiB After Width: | Height: | Size: 112 KiB |
@ -1,242 +1,242 @@
|
||||
"""MC3-P3: Strategy Learner - grading script.
|
||||
|
||||
Usage:
|
||||
- Switch to a student feedback directory first (will write "points.txt" and "comments.txt" in pwd).
|
||||
- Run this script with both ml4t/ and student solution in PYTHONPATH, e.g.:
|
||||
PYTHONPATH=ml4t:MC1-P2/jdoe7 python ml4t/mc2_p1_grading/grade_marketsim.py
|
||||
|
||||
Copyright 2017, Georgia Tech Research Corporation
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
|
||||
Template code for CS 4646/7646
|
||||
|
||||
Georgia Tech asserts copyright ownership of this template and all derivative
|
||||
works, including solutions to the projects assigned in this course. Students
|
||||
and other users of this template code are advised not to share it with others
|
||||
or to make it available on publicly viewable websites including repositories
|
||||
such as github and gitlab. This copyright statement should not be removed
|
||||
or edited.
|
||||
|
||||
We do grant permission to share solutions privately with non-students such
|
||||
as potential employers. However, sharing with other current or future
|
||||
students of CS 7646 is prohibited and subject to being investigated as a
|
||||
GT honor code violation.
|
||||
|
||||
-----do not edit anything above this line---
|
||||
|
||||
Student Name: Tucker Balch (replace with your name)
|
||||
GT User ID: tb34 (replace with your User ID)
|
||||
GT ID: 900897987 (replace with your GT ID)
|
||||
"""
|
||||
|
||||
import pytest
|
||||
from grading.grading import grader, GradeResult, run_with_timeout, IncorrectOutput
|
||||
|
||||
import os
|
||||
import sys
|
||||
import traceback as tb
|
||||
|
||||
import datetime as dt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from collections import namedtuple
|
||||
|
||||
import time
|
||||
import util
|
||||
import random
|
||||
|
||||
# Test cases
|
||||
StrategyTestCase = namedtuple('Strategy', ['description','insample_args','outsample_args','benchmark_type','benchmark','impact','train_time','test_time','max_time','seed'])
|
||||
strategy_test_cases = [
|
||||
StrategyTestCase(
|
||||
description="ML4T-220",
|
||||
insample_args=dict(symbol="ML4T-220",sd=dt.datetime(2008,1,1),ed=dt.datetime(2009,12,31),sv=100000),
|
||||
outsample_args=dict(symbol="ML4T-220",sd=dt.datetime(2010,1,1),ed=dt.datetime(2011,12,31),sv=100000),
|
||||
benchmark_type='clean',
|
||||
benchmark=1.0, #benchmark updated Apr 24 2017
|
||||
impact=0.0,
|
||||
train_time=25,
|
||||
test_time=5,
|
||||
max_time=60,
|
||||
seed=1481090000
|
||||
),
|
||||
StrategyTestCase(
|
||||
description="AAPL",
|
||||
insample_args=dict(symbol="AAPL",sd=dt.datetime(2008,1,1),ed=dt.datetime(2009,12,31),sv=100000),
|
||||
outsample_args=dict(symbol="AAPL",sd=dt.datetime(2010,1,1),ed=dt.datetime(2011,12,31),sv=100000),
|
||||
benchmark_type='stock',
|
||||
benchmark=0.1581999999999999, #benchmark computed Nov 22 2017
|
||||
impact=0.0,
|
||||
train_time=25,
|
||||
test_time=5,
|
||||
max_time=60,
|
||||
seed=1481090000
|
||||
),
|
||||
StrategyTestCase(
|
||||
description="SINE_FAST_NOISE",
|
||||
insample_args=dict(symbol="SINE_FAST_NOISE",sd=dt.datetime(2008,1,1),ed=dt.datetime(2009,12,31),sv=100000),
|
||||
outsample_args=dict(symbol="SINE_FAST_NOISE",sd=dt.datetime(2010,1,1),ed=dt.datetime(2011,12,31),sv=100000),
|
||||
benchmark_type='noisy',
|
||||
benchmark=2.0, #benchmark updated Apr 24 2017
|
||||
impact=0.0,
|
||||
train_time=25,
|
||||
test_time=5,
|
||||
max_time=60,
|
||||
seed=1481090000
|
||||
),
|
||||
StrategyTestCase(
|
||||
description="UNH - In sample",
|
||||
insample_args=dict(symbol="UNH",sd=dt.datetime(2008,1,1),ed=dt.datetime(2009,12,31),sv=100000),
|
||||
outsample_args=dict(symbol="UNH",sd=dt.datetime(2010,1,1),ed=dt.datetime(2011,12,31),sv=100000),
|
||||
benchmark_type='stock',
|
||||
benchmark= -0.25239999999999996, #benchmark computed Nov 22 2017
|
||||
impact=0.0,
|
||||
train_time=25,
|
||||
test_time=5,
|
||||
max_time=60,
|
||||
seed=1481090000
|
||||
),
|
||||
]
|
||||
|
||||
max_points = 60.0
|
||||
html_pre_block = True # surround comments with HTML <pre> tag (for T-Square comments field)
|
||||
|
||||
MAX_HOLDINGS = 1000
|
||||
|
||||
# Test functon(s)
|
||||
@pytest.mark.parametrize("description, insample_args, outsample_args, benchmark_type, benchmark, impact, train_time, test_time, max_time, seed", strategy_test_cases)
|
||||
def test_strategy(description, insample_args, outsample_args, benchmark_type, benchmark, impact, train_time, test_time, max_time, seed, grader):
|
||||
"""Test StrategyLearner.
|
||||
|
||||
Requires test description, insample args (dict), outsample args (dict), benchmark_type (str), benchmark (float)
|
||||
max time (seconds), points for this test case (int), random seed (long), and a grader fixture.
|
||||
"""
|
||||
points_earned = 0.0 # initialize points for this test case
|
||||
try:
|
||||
incorrect = True
|
||||
if not 'StrategyLearner' in globals():
|
||||
import importlib
|
||||
m = importlib.import_module('StrategyLearner')
|
||||
globals()['StrategyLearner'] = m
|
||||
outsample_cr_to_beat = None
|
||||
if benchmark_type == 'clean':
|
||||
outsample_cr_to_beat = benchmark
|
||||
def timeoutwrapper_strategylearner():
|
||||
#Set fixed seed for repetability
|
||||
np.random.seed(seed)
|
||||
random.seed(seed)
|
||||
learner = StrategyLearner.StrategyLearner(verbose=False,impact=impact)
|
||||
tmp = time.time()
|
||||
learner.addEvidence(**insample_args)
|
||||
train_t = time.time()-tmp
|
||||
tmp = time.time()
|
||||
insample_trades_1 = learner.testPolicy(**insample_args)
|
||||
test_t = time.time()-tmp
|
||||
insample_trades_2 = learner.testPolicy(**insample_args)
|
||||
tmp = time.time()
|
||||
outsample_trades = learner.testPolicy(**outsample_args)
|
||||
out_test_t = time.time()-tmp
|
||||
return insample_trades_1, insample_trades_2, outsample_trades, train_t, test_t, out_test_t
|
||||
msgs = []
|
||||
in_trades_1, in_trades_2, out_trades, train_t, test_t, out_test_t = run_with_timeout(timeoutwrapper_strategylearner,max_time,(),{})
|
||||
incorrect = False
|
||||
if len(in_trades_1.shape)!=2 or in_trades_1.shape[1]!=1:
|
||||
incorrect=True
|
||||
msgs.append(" First insample trades DF has invalid shape: {}".format(in_trades_1.shape))
|
||||
elif len(in_trades_2.shape)!=2 or in_trades_2.shape[1]!=1:
|
||||
incorrect=True
|
||||
msgs.append(" Second insample trades DF has invalid shape: {}".format(in_trades_2.shape))
|
||||
elif len(out_trades.shape)!=2 or out_trades.shape[1]!=1:
|
||||
incorrect=True
|
||||
msgs.append(" Out-of-sample trades DF has invalid shape: {}".format(out_trades.shape))
|
||||
else:
|
||||
tmp_csum=0.0
|
||||
for date,trade in in_trades_1.iterrows():
|
||||
tmp_csum+= trade.iloc[0]
|
||||
"""MC3-P3: Strategy Learner - grading script.
|
||||
|
||||
Usage:
|
||||
- Switch to a student feedback directory first (will write "points.txt" and "comments.txt" in pwd).
|
||||
- Run this script with both ml4t/ and student solution in PYTHONPATH, e.g.:
|
||||
PYTHONPATH=ml4t:MC1-P2/jdoe7 python ml4t/mc2_p1_grading/grade_marketsim.py
|
||||
|
||||
Copyright 2017, Georgia Tech Research Corporation
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
|
||||
Template code for CS 4646/7646
|
||||
|
||||
Georgia Tech asserts copyright ownership of this template and all derivative
|
||||
works, including solutions to the projects assigned in this course. Students
|
||||
and other users of this template code are advised not to share it with others
|
||||
or to make it available on publicly viewable websites including repositories
|
||||
such as github and gitlab. This copyright statement should not be removed
|
||||
or edited.
|
||||
|
||||
We do grant permission to share solutions privately with non-students such
|
||||
as potential employers. However, sharing with other current or future
|
||||
students of CS 7646 is prohibited and subject to being investigated as a
|
||||
GT honor code violation.
|
||||
|
||||
-----do not edit anything above this line---
|
||||
|
||||
Student Name: Tucker Balch (replace with your name)
|
||||
GT User ID: tb34 (replace with your User ID)
|
||||
GT ID: 900897987 (replace with your GT ID)
|
||||
"""
|
||||
|
||||
import pytest
|
||||
from grading.grading import grader, GradeResult, run_with_timeout, IncorrectOutput
|
||||
|
||||
import os
|
||||
import sys
|
||||
import traceback as tb
|
||||
|
||||
import datetime as dt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from collections import namedtuple
|
||||
|
||||
import time
|
||||
import util
|
||||
import random
|
||||
|
||||
# Test cases
|
||||
StrategyTestCase = namedtuple('Strategy', ['description','insample_args','outsample_args','benchmark_type','benchmark','impact','train_time','test_time','max_time','seed'])
|
||||
strategy_test_cases = [
|
||||
StrategyTestCase(
|
||||
description="ML4T-220",
|
||||
insample_args=dict(symbol="ML4T-220",sd=dt.datetime(2008,1,1),ed=dt.datetime(2009,12,31),sv=100000),
|
||||
outsample_args=dict(symbol="ML4T-220",sd=dt.datetime(2010,1,1),ed=dt.datetime(2011,12,31),sv=100000),
|
||||
benchmark_type='clean',
|
||||
benchmark=1.0, #benchmark updated Apr 24 2017
|
||||
impact=0.0,
|
||||
train_time=25,
|
||||
test_time=5,
|
||||
max_time=60,
|
||||
seed=1481090000
|
||||
),
|
||||
StrategyTestCase(
|
||||
description="AAPL",
|
||||
insample_args=dict(symbol="AAPL",sd=dt.datetime(2008,1,1),ed=dt.datetime(2009,12,31),sv=100000),
|
||||
outsample_args=dict(symbol="AAPL",sd=dt.datetime(2010,1,1),ed=dt.datetime(2011,12,31),sv=100000),
|
||||
benchmark_type='stock',
|
||||
benchmark=0.1581999999999999, #benchmark computed Nov 22 2017
|
||||
impact=0.0,
|
||||
train_time=25,
|
||||
test_time=5,
|
||||
max_time=60,
|
||||
seed=1481090000
|
||||
),
|
||||
StrategyTestCase(
|
||||
description="SINE_FAST_NOISE",
|
||||
insample_args=dict(symbol="SINE_FAST_NOISE",sd=dt.datetime(2008,1,1),ed=dt.datetime(2009,12,31),sv=100000),
|
||||
outsample_args=dict(symbol="SINE_FAST_NOISE",sd=dt.datetime(2010,1,1),ed=dt.datetime(2011,12,31),sv=100000),
|
||||
benchmark_type='noisy',
|
||||
benchmark=2.0, #benchmark updated Apr 24 2017
|
||||
impact=0.0,
|
||||
train_time=25,
|
||||
test_time=5,
|
||||
max_time=60,
|
||||
seed=1481090000
|
||||
),
|
||||
StrategyTestCase(
|
||||
description="UNH - In sample",
|
||||
insample_args=dict(symbol="UNH",sd=dt.datetime(2008,1,1),ed=dt.datetime(2009,12,31),sv=100000),
|
||||
outsample_args=dict(symbol="UNH",sd=dt.datetime(2010,1,1),ed=dt.datetime(2011,12,31),sv=100000),
|
||||
benchmark_type='stock',
|
||||
benchmark= -0.25239999999999996, #benchmark computed Nov 22 2017
|
||||
impact=0.0,
|
||||
train_time=25,
|
||||
test_time=5,
|
||||
max_time=60,
|
||||
seed=1481090000
|
||||
),
|
||||
]
|
||||
|
||||
max_points = 60.0
|
||||
html_pre_block = True # surround comments with HTML <pre> tag (for T-Square comments field)
|
||||
|
||||
MAX_HOLDINGS = 1000
|
||||
|
||||
# Test functon(s)
|
||||
@pytest.mark.parametrize("description, insample_args, outsample_args, benchmark_type, benchmark, impact, train_time, test_time, max_time, seed", strategy_test_cases)
|
||||
def test_strategy(description, insample_args, outsample_args, benchmark_type, benchmark, impact, train_time, test_time, max_time, seed, grader):
|
||||
"""Test StrategyLearner.
|
||||
|
||||
Requires test description, insample args (dict), outsample args (dict), benchmark_type (str), benchmark (float)
|
||||
max time (seconds), points for this test case (int), random seed (long), and a grader fixture.
|
||||
"""
|
||||
points_earned = 0.0 # initialize points for this test case
|
||||
try:
|
||||
incorrect = True
|
||||
if not 'StrategyLearner' in globals():
|
||||
import importlib
|
||||
m = importlib.import_module('StrategyLearner')
|
||||
globals()['StrategyLearner'] = m
|
||||
outsample_cr_to_beat = None
|
||||
if benchmark_type == 'clean':
|
||||
outsample_cr_to_beat = benchmark
|
||||
def timeoutwrapper_strategylearner():
|
||||
#Set fixed seed for repetability
|
||||
np.random.seed(seed)
|
||||
random.seed(seed)
|
||||
learner = StrategyLearner.StrategyLearner(verbose=False,impact=impact)
|
||||
tmp = time.time()
|
||||
learner.addEvidence(**insample_args)
|
||||
train_t = time.time()-tmp
|
||||
tmp = time.time()
|
||||
insample_trades_1 = learner.testPolicy(**insample_args)
|
||||
test_t = time.time()-tmp
|
||||
insample_trades_2 = learner.testPolicy(**insample_args)
|
||||
tmp = time.time()
|
||||
outsample_trades = learner.testPolicy(**outsample_args)
|
||||
out_test_t = time.time()-tmp
|
||||
return insample_trades_1, insample_trades_2, outsample_trades, train_t, test_t, out_test_t
|
||||
msgs = []
|
||||
in_trades_1, in_trades_2, out_trades, train_t, test_t, out_test_t = run_with_timeout(timeoutwrapper_strategylearner,max_time,(),{})
|
||||
incorrect = False
|
||||
if len(in_trades_1.shape)!=2 or in_trades_1.shape[1]!=1:
|
||||
incorrect=True
|
||||
msgs.append(" First insample trades DF has invalid shape: {}".format(in_trades_1.shape))
|
||||
elif len(in_trades_2.shape)!=2 or in_trades_2.shape[1]!=1:
|
||||
incorrect=True
|
||||
msgs.append(" Second insample trades DF has invalid shape: {}".format(in_trades_2.shape))
|
||||
elif len(out_trades.shape)!=2 or out_trades.shape[1]!=1:
|
||||
incorrect=True
|
||||
msgs.append(" Out-of-sample trades DF has invalid shape: {}".format(out_trades.shape))
|
||||
else:
|
||||
tmp_csum=0.0
|
||||
for date,trade in in_trades_1.iterrows():
|
||||
tmp_csum+= trade.iloc[0]
|
||||
if (trade.iloc[0]!=0) and\
|
||||
(trade.abs().iloc[0]!=MAX_HOLDINGS) and\
|
||||
(trade.abs().iloc[0]!=2*MAX_HOLDINGS):
|
||||
incorrect=True
|
||||
msgs.append(" illegal trade in first insample DF. abs(trade) not one of ({},{},{}).\n Date {}, Trade {}".format(0,MAX_HOLDINGS,2*MAX_HOLDINGS,date,trade))
|
||||
break
|
||||
elif abs(tmp_csum)>MAX_HOLDINGS:
|
||||
incorrect=True
|
||||
msgs.append(" holdings more than {} long or short in first insample DF. Date {}, Trade {}".format(MAX_HOLDINGS,date,trade))
|
||||
break
|
||||
tmp_csum=0.0
|
||||
for date,trade in in_trades_2.iterrows():
|
||||
tmp_csum+= trade.iloc[0]
|
||||
(trade.abs().iloc[0]!=2*MAX_HOLDINGS):
|
||||
incorrect=True
|
||||
msgs.append(" illegal trade in first insample DF. abs(trade) not one of ({},{},{}).\n Date {}, Trade {}".format(0,MAX_HOLDINGS,2*MAX_HOLDINGS,date,trade))
|
||||
break
|
||||
elif abs(tmp_csum)>MAX_HOLDINGS:
|
||||
incorrect=True
|
||||
msgs.append(" holdings more than {} long or short in first insample DF. Date {}, Trade {}".format(MAX_HOLDINGS,date,trade))
|
||||
break
|
||||
tmp_csum=0.0
|
||||
for date,trade in in_trades_2.iterrows():
|
||||
tmp_csum+= trade.iloc[0]
|
||||
if (trade.iloc[0]!=0) and\
|
||||
(trade.abs().iloc[0]!=MAX_HOLDINGS) and\
|
||||
(trade.abs().iloc[0]!=2*MAX_HOLDINGS):
|
||||
incorrect=True
|
||||
msgs.append(" illegal trade in second insample DF. abs(trade) not one of ({},{},{}).\n Date {}, Trade {}".format(0,MAX_HOLDINGS,2*MAX_HOLDINGS,date,trade))
|
||||
break
|
||||
elif abs(tmp_csum)>MAX_HOLDINGS:
|
||||
incorrect=True
|
||||
msgs.append(" holdings more than {} long or short in second insample DF. Date {}, Trade {}".format(MAX_HOLDINGS,date,trade))
|
||||
break
|
||||
tmp_csum=0.0
|
||||
for date,trade in out_trades.iterrows():
|
||||
tmp_csum+= trade.iloc[0]
|
||||
(trade.abs().iloc[0]!=2*MAX_HOLDINGS):
|
||||
incorrect=True
|
||||
msgs.append(" illegal trade in second insample DF. abs(trade) not one of ({},{},{}).\n Date {}, Trade {}".format(0,MAX_HOLDINGS,2*MAX_HOLDINGS,date,trade))
|
||||
break
|
||||
elif abs(tmp_csum)>MAX_HOLDINGS:
|
||||
incorrect=True
|
||||
msgs.append(" holdings more than {} long or short in second insample DF. Date {}, Trade {}".format(MAX_HOLDINGS,date,trade))
|
||||
break
|
||||
tmp_csum=0.0
|
||||
for date,trade in out_trades.iterrows():
|
||||
tmp_csum+= trade.iloc[0]
|
||||
if (trade.iloc[0]!=0) and\
|
||||
(trade.abs().iloc[0]!=MAX_HOLDINGS) and\
|
||||
(trade.abs().iloc[0]!=2*MAX_HOLDINGS):
|
||||
incorrect=True
|
||||
msgs.append(" illegal trade in out-of-sample DF. abs(trade) not one of ({},{},{}).\n Date {}, Trade {}".format(0,MAX_HOLDINGS,2*MAX_HOLDINGS,date,trade))
|
||||
break
|
||||
elif abs(tmp_csum)>MAX_HOLDINGS:
|
||||
incorrect=True
|
||||
msgs.append(" holdings more than {} long or short in out-of-sample DF. Date {}, Trade {}".format(MAX_HOLDINGS,date,trade))
|
||||
break
|
||||
(trade.abs().iloc[0]!=2*MAX_HOLDINGS):
|
||||
incorrect=True
|
||||
msgs.append(" illegal trade in out-of-sample DF. abs(trade) not one of ({},{},{}).\n Date {}, Trade {}".format(0,MAX_HOLDINGS,2*MAX_HOLDINGS,date,trade))
|
||||
break
|
||||
elif abs(tmp_csum)>MAX_HOLDINGS:
|
||||
incorrect=True
|
||||
msgs.append(" holdings more than {} long or short in out-of-sample DF. Date {}, Trade {}".format(MAX_HOLDINGS,date,trade))
|
||||
break
|
||||
# if (((in_trades_1.abs()!=0) & (in_trades_1.abs()!=MAX_HOLDINGS) & (in_trades_1.abs()!=2*MAX_HOLDINGS)).any().any() or\
|
||||
# ((in_trades_2.abs()!=0) & (in_trades_2.abs()!=MAX_HOLDINGS) & (in_trades_2.abs()!=2*MAX_HOLDINGS)).any().any() or\
|
||||
# ((out_trades.abs()!=0) & (out_trades.abs()!=MAX_HOLDINGS) & (out_trades.abs()!=2*MAX_HOLDINGS)).any().any()):
|
||||
# incorrect = True
|
||||
# msgs.append(" illegal trade. abs(trades) not one of ({},{},{})".format(0,MAX_HOLDINGS,2*MAX_HOLDINGS))
|
||||
# if ((in_trades_1.cumsum().abs()>MAX_HOLDINGS).any()[0]) or ((in_trades_2.cumsum().abs()>MAX_HOLDINGS).any()[0]) or ((out_trades.cumsum().abs()>MAX_HOLDINGS).any()[0]):
|
||||
# incorrect = True
|
||||
# msgs.append(" holdings more than {} long or short".format(MAX_HOLDINGS))
|
||||
if not(incorrect):
|
||||
if train_t>train_time:
|
||||
incorrect=True
|
||||
msgs.append(" addEvidence() took {} seconds, max allowed {}".format(train_t,train_time))
|
||||
else:
|
||||
points_earned += 1.0
|
||||
if test_t > test_time:
|
||||
incorrect = True
|
||||
msgs.append(" testPolicy() took {} seconds, max allowed {}".format(test_t,test_time))
|
||||
else:
|
||||
points_earned += 2.0
|
||||
if not((in_trades_1 == in_trades_2).all()[0]):
|
||||
incorrect = True
|
||||
mismatches = in_trades_1.join(in_trades_2,how='outer',lsuffix='1',rsuffix='2')
|
||||
mismatches = mismatches[mismatches.iloc[:,0]!=mismatches.iloc[:,1]]
|
||||
msgs.append(" consecutive calls to testPolicy() with same input did not produce same output:")
|
||||
msgs.append(" Mismatched trades:\n {}".format(mismatches))
|
||||
else:
|
||||
points_earned += 2.0
|
||||
student_insample_cr = evalPolicy2(insample_args['symbol'],in_trades_1,insample_args['sv'],insample_args['sd'],insample_args['ed'],market_impact=impact,commission_cost=0.0)
|
||||
student_outsample_cr = evalPolicy2(outsample_args['symbol'],out_trades, outsample_args['sv'],outsample_args['sd'],outsample_args['ed'],market_impact=impact,commission_cost=0.0)
|
||||
if student_insample_cr <= benchmark:
|
||||
incorrect = True
|
||||
msgs.append(" in-sample return ({}) did not beat benchmark ({})".format(student_insample_cr,benchmark))
|
||||
else:
|
||||
points_earned += 5.0
|
||||
if outsample_cr_to_beat is None:
|
||||
if out_test_t > test_time:
|
||||
incorrect = True
|
||||
msgs.append(" out-sample took {} seconds, max of {}".format(out_test_t,test_time))
|
||||
else:
|
||||
points_earned += 5.0
|
||||
else:
|
||||
if student_outsample_cr < outsample_cr_to_beat:
|
||||
incorrect = True
|
||||
msgs.append(" out-sample return ({}) did not beat benchmark ({})".format(student_outsample_cr,outsample_cr_to_beat))
|
||||
else:
|
||||
points_earned += 5.0
|
||||
if incorrect:
|
||||
# ((out_trades.abs()!=0) & (out_trades.abs()!=MAX_HOLDINGS) & (out_trades.abs()!=2*MAX_HOLDINGS)).any().any()):
|
||||
# incorrect = True
|
||||
# msgs.append(" illegal trade. abs(trades) not one of ({},{},{})".format(0,MAX_HOLDINGS,2*MAX_HOLDINGS))
|
||||
# if ((in_trades_1.cumsum().abs()>MAX_HOLDINGS).any()[0]) or ((in_trades_2.cumsum().abs()>MAX_HOLDINGS).any()[0]) or ((out_trades.cumsum().abs()>MAX_HOLDINGS).any()[0]):
|
||||
# incorrect = True
|
||||
# msgs.append(" holdings more than {} long or short".format(MAX_HOLDINGS))
|
||||
if not(incorrect):
|
||||
if train_t>train_time:
|
||||
incorrect=True
|
||||
msgs.append(" addEvidence() took {} seconds, max allowed {}".format(train_t,train_time))
|
||||
else:
|
||||
points_earned += 1.0
|
||||
if test_t > test_time:
|
||||
incorrect = True
|
||||
msgs.append(" testPolicy() took {} seconds, max allowed {}".format(test_t,test_time))
|
||||
else:
|
||||
points_earned += 2.0
|
||||
if not((in_trades_1 == in_trades_2).all()[0]):
|
||||
incorrect = True
|
||||
mismatches = in_trades_1.join(in_trades_2,how='outer',lsuffix='1',rsuffix='2')
|
||||
mismatches = mismatches[mismatches.iloc[:,0]!=mismatches.iloc[:,1]]
|
||||
msgs.append(" consecutive calls to testPolicy() with same input did not produce same output:")
|
||||
msgs.append(" Mismatched trades:\n {}".format(mismatches))
|
||||
else:
|
||||
points_earned += 2.0
|
||||
student_insample_cr = evalPolicy2(insample_args['symbol'],in_trades_1,insample_args['sv'],insample_args['sd'],insample_args['ed'],market_impact=impact,commission_cost=0.0)
|
||||
student_outsample_cr = evalPolicy2(outsample_args['symbol'],out_trades, outsample_args['sv'],outsample_args['sd'],outsample_args['ed'],market_impact=impact,commission_cost=0.0)
|
||||
if student_insample_cr <= benchmark:
|
||||
incorrect = True
|
||||
msgs.append(" in-sample return ({}) did not beat benchmark ({})".format(student_insample_cr,benchmark))
|
||||
else:
|
||||
points_earned += 5.0
|
||||
if outsample_cr_to_beat is None:
|
||||
if out_test_t > test_time:
|
||||
incorrect = True
|
||||
msgs.append(" out-sample took {} seconds, max of {}".format(out_test_t,test_time))
|
||||
else:
|
||||
points_earned += 5.0
|
||||
else:
|
||||
if student_outsample_cr < outsample_cr_to_beat:
|
||||
incorrect = True
|
||||
msgs.append(" out-sample return ({}) did not beat benchmark ({})".format(student_outsample_cr,outsample_cr_to_beat))
|
||||
else:
|
||||
points_earned += 5.0
|
||||
if incorrect:
|
||||
inputs_str = " insample_args: {}\n" \
|
||||
" outsample_args: {}\n" \
|
||||
" benchmark_type: {}\n" \
|
||||
@ -244,96 +244,96 @@ def test_strategy(description, insample_args, outsample_args, benchmark_type, be
|
||||
" train_time: {}\n" \
|
||||
" test_time: {}\n" \
|
||||
" max_time: {}\n" \
|
||||
" seed: {}\n".format(insample_args, outsample_args, benchmark_type, benchmark, train_time, test_time, max_time,seed)
|
||||
raise IncorrectOutput("Test failed on one or more output criteria.\n Inputs:\n{}\n Failures:\n{}".format(inputs_str, "\n".join(msgs)))
|
||||
except Exception as e:
|
||||
# Test result: failed
|
||||
msg = "Test case description: {}\n".format(description)
|
||||
|
||||
# Generate a filtered stacktrace, only showing erroneous lines in student file(s)
|
||||
tb_list = tb.extract_tb(sys.exc_info()[2])
|
||||
for i in range(len(tb_list)):
|
||||
row = tb_list[i]
|
||||
tb_list[i] = (os.path.basename(row[0]), row[1], row[2], row[3]) # show only filename instead of long absolute path
|
||||
# tb_list = [row for row in tb_list if row[0] in ['QLearner.py','StrategyLearner.py']]
|
||||
if tb_list:
|
||||
msg += "Traceback:\n"
|
||||
msg += ''.join(tb.format_list(tb_list)) # contains newlines
|
||||
elif 'grading_traceback' in dir(e):
|
||||
msg += "Traceback:\n"
|
||||
msg += ''.join(tb.format_list(e.grading_traceback))
|
||||
msg += "{}: {}".format(e.__class__.__name__, str(e))
|
||||
|
||||
# Report failure result to grader, with stacktrace
|
||||
grader.add_result(GradeResult(outcome='failed', points=points_earned, msg=msg))
|
||||
raise
|
||||
else:
|
||||
# Test result: passed (no exceptions)
|
||||
grader.add_result(GradeResult(outcome='passed', points=points_earned, msg=None))
|
||||
|
||||
def compute_benchmark(sd,ed,sv,symbol,market_impact,commission_cost,max_holdings):
|
||||
date_idx = util.get_data([symbol,],pd.date_range(sd,ed)).index
|
||||
orders = pd.DataFrame(index=date_idx)
|
||||
orders['orders'] = 0; orders['orders'][0] = max_holdings; orders['orders'][-1] = -max_holdings
|
||||
return evalPolicy2(symbol,orders,sv,sd,ed,market_impact,commission_cost)
|
||||
|
||||
def evalPolicy(student_trades,sym_prices,startval):
|
||||
ending_cash = startval - student_trades.mul(sym_prices,axis=0).sum()
|
||||
ending_stocks = student_trades.sum()*sym_prices.iloc[-1]
|
||||
return float((ending_cash+ending_stocks)/startval)-1.0
|
||||
|
||||
def evalPolicy2(symbol, student_trades, startval, sd, ed, market_impact,commission_cost):
|
||||
orders_df = pd.DataFrame(columns=['Shares','Order','Symbol'])
|
||||
for row_idx in student_trades.index:
|
||||
nshares = student_trades.loc[row_idx][0]
|
||||
if nshares == 0:
|
||||
continue
|
||||
order = 'sell' if nshares < 0 else 'buy'
|
||||
new_row = pd.DataFrame([[abs(nshares),order,symbol],],columns=['Shares','Order','Symbol'],index=[row_idx,])
|
||||
orders_df = orders_df.append(new_row)
|
||||
portvals = compute_portvals(orders_df, sd, ed, startval,market_impact,commission_cost)
|
||||
return float(portvals[-1]/portvals[0])-1
|
||||
|
||||
def compute_portvals(orders_df, start_date, end_date, startval, market_impact=0.0, commission_cost=0.0):
|
||||
"""Simulate the market for the given date range and orders file."""
|
||||
symbols = []
|
||||
orders = []
|
||||
orders_df = orders_df.sort_index()
|
||||
for date, order in orders_df.iterrows():
|
||||
shares = order['Shares']
|
||||
action = order['Order']
|
||||
symbol = order['Symbol']
|
||||
if action.lower() == 'sell':
|
||||
shares *= -1
|
||||
order = (date, symbol, shares)
|
||||
orders.append(order)
|
||||
symbols.append(symbol)
|
||||
symbols = list(set(symbols))
|
||||
dates = pd.date_range(start_date, end_date)
|
||||
prices_all = util.get_data(symbols, dates)
|
||||
prices = prices_all[symbols]
|
||||
prices = prices.fillna(method='ffill').fillna(method='bfill')
|
||||
prices['_CASH'] = 1.0
|
||||
trades = pd.DataFrame(index=prices.index, columns=symbols)
|
||||
trades = trades.fillna(0)
|
||||
cash = pd.Series(index=prices.index)
|
||||
cash = cash.fillna(0)
|
||||
cash.iloc[0] = startval
|
||||
for date, symbol, shares in orders:
|
||||
price = prices[symbol][date]
|
||||
val = shares * price
|
||||
# transaction cost model
|
||||
val += commission_cost + (pd.np.abs(shares)*price*market_impact)
|
||||
positions = prices.loc[date] * trades.sum()
|
||||
totalcash = cash.sum()
|
||||
if (date < prices.index.min()) or (date > prices.index.max()):
|
||||
continue
|
||||
trades[symbol][date] += shares
|
||||
cash[date] -= val
|
||||
trades['_CASH'] = cash
|
||||
holdings = trades.cumsum()
|
||||
df_portvals = (prices * holdings).sum(axis=1)
|
||||
return df_portvals
|
||||
|
||||
if __name__ == "__main__":
|
||||
pytest.main(["-s", __file__])
|
||||
" seed: {}\n".format(insample_args, outsample_args, benchmark_type, benchmark, train_time, test_time, max_time,seed)
|
||||
raise IncorrectOutput("Test failed on one or more output criteria.\n Inputs:\n{}\n Failures:\n{}".format(inputs_str, "\n".join(msgs)))
|
||||
except Exception as e:
|
||||
# Test result: failed
|
||||
msg = "Test case description: {}\n".format(description)
|
||||
|
||||
# Generate a filtered stacktrace, only showing erroneous lines in student file(s)
|
||||
tb_list = tb.extract_tb(sys.exc_info()[2])
|
||||
for i in range(len(tb_list)):
|
||||
row = tb_list[i]
|
||||
tb_list[i] = (os.path.basename(row[0]), row[1], row[2], row[3]) # show only filename instead of long absolute path
|
||||
# tb_list = [row for row in tb_list if row[0] in ['QLearner.py','StrategyLearner.py']]
|
||||
if tb_list:
|
||||
msg += "Traceback:\n"
|
||||
msg += ''.join(tb.format_list(tb_list)) # contains newlines
|
||||
elif 'grading_traceback' in dir(e):
|
||||
msg += "Traceback:\n"
|
||||
msg += ''.join(tb.format_list(e.grading_traceback))
|
||||
msg += "{}: {}".format(e.__class__.__name__, str(e))
|
||||
|
||||
# Report failure result to grader, with stacktrace
|
||||
grader.add_result(GradeResult(outcome='failed', points=points_earned, msg=msg))
|
||||
raise
|
||||
else:
|
||||
# Test result: passed (no exceptions)
|
||||
grader.add_result(GradeResult(outcome='passed', points=points_earned, msg=None))
|
||||
|
||||
def compute_benchmark(sd,ed,sv,symbol,market_impact,commission_cost,max_holdings):
|
||||
date_idx = util.get_data([symbol,],pd.date_range(sd,ed)).index
|
||||
orders = pd.DataFrame(index=date_idx)
|
||||
orders['orders'] = 0; orders['orders'][0] = max_holdings; orders['orders'][-1] = -max_holdings
|
||||
return evalPolicy2(symbol,orders,sv,sd,ed,market_impact,commission_cost)
|
||||
|
||||
def evalPolicy(student_trades,sym_prices,startval):
|
||||
ending_cash = startval - student_trades.mul(sym_prices,axis=0).sum()
|
||||
ending_stocks = student_trades.sum()*sym_prices.iloc[-1]
|
||||
return float((ending_cash+ending_stocks)/startval)-1.0
|
||||
|
||||
def evalPolicy2(symbol, student_trades, startval, sd, ed, market_impact,commission_cost):
|
||||
orders_df = pd.DataFrame(columns=['Shares','Order','Symbol'])
|
||||
for row_idx in student_trades.index:
|
||||
nshares = student_trades.loc[row_idx][0]
|
||||
if nshares == 0:
|
||||
continue
|
||||
order = 'sell' if nshares < 0 else 'buy'
|
||||
new_row = pd.DataFrame([[abs(nshares),order,symbol],],columns=['Shares','Order','Symbol'],index=[row_idx,])
|
||||
orders_df = orders_df.append(new_row)
|
||||
portvals = compute_portvals(orders_df, sd, ed, startval,market_impact,commission_cost)
|
||||
return float(portvals[-1]/portvals[0])-1
|
||||
|
||||
def compute_portvals(orders_df, start_date, end_date, startval, market_impact=0.0, commission_cost=0.0):
|
||||
"""Simulate the market for the given date range and orders file."""
|
||||
symbols = []
|
||||
orders = []
|
||||
orders_df = orders_df.sort_index()
|
||||
for date, order in orders_df.iterrows():
|
||||
shares = order['Shares']
|
||||
action = order['Order']
|
||||
symbol = order['Symbol']
|
||||
if action.lower() == 'sell':
|
||||
shares *= -1
|
||||
order = (date, symbol, shares)
|
||||
orders.append(order)
|
||||
symbols.append(symbol)
|
||||
symbols = list(set(symbols))
|
||||
dates = pd.date_range(start_date, end_date)
|
||||
prices_all = util.get_data(symbols, dates)
|
||||
prices = prices_all[symbols]
|
||||
prices = prices.fillna(method='ffill').fillna(method='bfill')
|
||||
prices['_CASH'] = 1.0
|
||||
trades = pd.DataFrame(index=prices.index, columns=symbols)
|
||||
trades = trades.fillna(0)
|
||||
cash = pd.Series(index=prices.index)
|
||||
cash = cash.fillna(0)
|
||||
cash.iloc[0] = startval
|
||||
for date, symbol, shares in orders:
|
||||
price = prices[symbol][date]
|
||||
val = shares * price
|
||||
# transaction cost model
|
||||
val += commission_cost + (pd.np.abs(shares)*price*market_impact)
|
||||
positions = prices.loc[date] * trades.sum()
|
||||
totalcash = cash.sum()
|
||||
if (date < prices.index.min()) or (date > prices.index.max()):
|
||||
continue
|
||||
trades[symbol][date] += shares
|
||||
cash[date] -= val
|
||||
trades['_CASH'] = cash
|
||||
holdings = trades.cumsum()
|
||||
df_portvals = (prices * holdings).sum(axis=1)
|
||||
return df_portvals
|
||||
|
||||
if __name__ == "__main__":
|
||||
pytest.main(["-s", __file__])
|
||||
|
@ -73,7 +73,7 @@ def rsi(df, symbol, period=14):
|
||||
(avg_loss / period))))
|
||||
return rsi
|
||||
|
||||
key = f"rsi"
|
||||
key = "rsi"
|
||||
# Add one to get 'period' price changes (first change is nan).
|
||||
period += 1
|
||||
df[key] = df[symbol].rolling(period).apply(rsi)
|
||||
@ -91,13 +91,6 @@ def macd(df, symbol):
|
||||
return df[[k1, k2, k3]]
|
||||
|
||||
|
||||
def price_delta(df, symbol, period=1):
|
||||
"""Calculate delta between previous day and today."""
|
||||
k = f"diff_{period}"
|
||||
df[k] = df[symbol].diff(periods=period)
|
||||
return df[k]
|
||||
|
||||
|
||||
def price_delta(df, symbol, period=1):
|
||||
"""Calculate percentage change for period."""
|
||||
k = f"pct_{period}"
|
||||
|
Loading…
Reference in New Issue
Block a user