Show both MACD and indicator strat on figure

Prepare for strategy learner.
This commit is contained in:
Felix Martin 2020-11-04 09:23:42 -05:00
parent 0519ae9336
commit c40ffcf84b
4 changed files with 61 additions and 28 deletions

View File

@ -36,18 +36,21 @@ class ManualStrategy:
print(volume)
def macd_strat(self, macd, orders):
"""Strategy based on MACD cross."""
def strat(ser):
m = macd.loc[ser.index]
prev_macd, prev_signal = m.iloc[0]
cur_macd, cur_signal = m.iloc[1]
prev_macd, prev_signal, _ = m.iloc[0]
cur_macd, cur_signal, _ = m.iloc[1]
shares = 0
if cur_macd < -1 and prev_macd < prev_signal and cur_macd > cur_signal:
if cur_macd < -1 and prev_macd < prev_signal \
and cur_macd > cur_signal:
if self.holding == 0:
shares = 1000
elif self.holding == -1000:
shares = 2000
elif cur_macd > 1 and prev_macd > prev_signal and cur_macd < cur_signal:
elif cur_macd > 1 and prev_macd > prev_signal \
and cur_macd < cur_signal:
if self.holding == 0:
shares = -1000
elif self.holding == 1000:
@ -58,6 +61,8 @@ class ManualStrategy:
orders['Shares'] = orders['Shares'].rolling(2).apply(strat)
def three_indicator_strat(self, macd, rsi, price_sma, orders):
"""Strategy based on three indicators. Thresholds selected based on
scatter plots."""
def strat(row):
shares = 0
_, _, macd_diff = macd.loc[row.name]
@ -87,7 +92,7 @@ class ManualStrategy:
def testPolicy(self, symbol="IBM",
sd=dt.datetime(2009, 1, 1),
ed=dt.datetime(2010, 1, 1),
sv=10000):
sv=10000, macd_strat=False):
self.holding = 0
df = util.get_data([symbol], pd.date_range(sd, ed))
@ -102,7 +107,8 @@ class ManualStrategy:
rsi = indicators.rsi(df, symbol)
price_sma = indicators.price_sma(df, symbol, [8])
# self.macd_strat(macd, orders)
self.three_indicator_strat(macd, rsi, price_sma, orders)
if macd_strat:
self.macd_strat(macd, orders)
else:
self.three_indicator_strat(macd, rsi, price_sma, orders)
return orders

View File

@ -9,6 +9,7 @@ import matplotlib.pyplot as plt
from matplotlib.widgets import MultiCursor
from BenchmarkStrategy import BenchmarkStrategy
from ManualStrategy import ManualStrategy
from StrategyLearner import StrategyLearner
def plot_indicators(symbol, df):
@ -16,7 +17,6 @@ def plot_indicators(symbol, df):
price_sma = indicators.price_sma(df, symbol, [8])
bb = indicators.bollinger_band(df, symbol)
sma = indicators.sma(df, symbol, [8])
rsi = indicators.rsi(df, symbol)
macd = indicators.macd(df, symbol).copy()
@ -57,6 +57,40 @@ def visualize_correlations(symbol, df):
sys.exit(0)
def compare_manual_strategies(symbol, sv, sd, ed):
df = util.get_data([symbol], pd.date_range(sd, ed))
df.drop(columns=["SPY"], inplace=True)
bs = BenchmarkStrategy()
orders = bs.testPolicy(symbol, sd, ed, sv)
df["Benchmark"] = marketsim.compute_portvals(orders, sv)
df["Orders Benchmark"] = orders["Shares"]
ms = ManualStrategy()
orders = ms.testPolicy(symbol, sd, ed, sv, macd_strat=True)
df["MACD Strat"] = marketsim.compute_portvals(orders, sv)
df["Orders MACD"] = orders["Shares"]
# df["Holding Manual"] = orders["Shares"].cumsum()
orders = ms.testPolicy(symbol, sd, ed, sv)
df["Three Strat"] = marketsim.compute_portvals(orders, sv)
df["Orders Three"] = orders["Shares"]
fig, ax = plt.subplots(3, sharex=True)
df[[symbol]].plot(ax=ax[0])
df[["Benchmark", "MACD Strat", "Three Strat"]].plot(ax=ax[1])
df[["Orders Benchmark", "Orders MACD", "Orders Three"]].plot(ax=ax[2])
for a in ax:
a.grid()
MultiCursor(fig.canvas, ax, color='r', lw=0.5)
# plt.show()
fig.set_size_inches(10, 8, forward=True)
plt.savefig('figure_1.png', dpi=fig.dpi)
def experiment1():
symbol = "JPM"
start_value = 10000
@ -65,33 +99,33 @@ def experiment1():
# sd = dt.datetime(2010, 1, 1) # out-sample
# ed = dt.datetime(2011, 12, 31) # out-sample
df = util.get_data([symbol], pd.date_range(sd, ed))
df.drop(columns=["SPY"], inplace=True)
# visualize_correlations(symbol, df)
# plot_indicators(symbol, df)
# compare_manual_strategies(symbol, start_value, sd, ed)
df = util.get_data([symbol], pd.date_range(sd, ed))
df.drop(columns=["SPY"], inplace=True)
bs = BenchmarkStrategy()
orders = bs.testPolicy(symbol, sd, ed, start_value)
df["Benchmark"] = marketsim.compute_portvals(orders, start_value)
df["Orders Benchmark"] = orders["Shares"]
ms = ManualStrategy()
sl = StrategyLearner()
orders = ms.testPolicy(symbol, sd, ed, start_value)
df["Manual"] = marketsim.compute_portvals(orders, start_value)
df["Orders Manual"] = orders["Shares"]
df["Holding Manual"] = orders["Shares"].cumsum()
df["SL"] = marketsim.compute_portvals(orders, start_value)
df["Orders SL"] = orders["Shares"]
# df["Holding Manual"] = orders["Shares"].cumsum()
fig, ax = plt.subplots(3, sharex=True)
df[[symbol]].plot(ax=ax[0])
df[["Benchmark", "Manual"]].plot(ax=ax[1])
df[["Orders Benchmark", "Orders Manual"]].plot(ax=ax[2])
df[["Benchmark", "SL"]].plot(ax=ax[1])
df[["Orders Benchmark", "Orders SL"]].plot(ax=ax[2])
for a in ax:
a.grid()
multi = MultiCursor(fig.canvas, ax, color='r', lw=0.5)
MultiCursor(fig.canvas, ax, color='r', lw=0.5)
plt.show()
# plt.savefig('figure_1.png')
if __name__ == "__main__":

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

After

Width:  |  Height:  |  Size: 112 KiB

View File

@ -73,7 +73,7 @@ def rsi(df, symbol, period=14):
(avg_loss / period))))
return rsi
key = f"rsi"
key = "rsi"
# Add one to get 'period' price changes (first change is nan).
period += 1
df[key] = df[symbol].rolling(period).apply(rsi)
@ -91,13 +91,6 @@ def macd(df, symbol):
return df[[k1, k2, k3]]
def price_delta(df, symbol, period=1):
"""Calculate delta between previous day and today."""
k = f"diff_{period}"
df[k] = df[symbol].diff(periods=period)
return df[k]
def price_delta(df, symbol, period=1):
"""Calculate percentage change for period."""
k = f"pct_{period}"