Add tree learners to strategy evaluation directory

This commit is contained in:
Felix Martin 2020-11-04 15:15:24 -05:00
parent 05db89e8c2
commit 10d87aefd3
3 changed files with 154 additions and 0 deletions

View File

@ -0,0 +1,77 @@
import numpy as np
class AbstractTreeLearner:
LEAF = -1
NA = -1
def author(self):
return 'felixm' # replace tb34 with your Georgia Tech username
def create_node(self, factor, split_value, left, right):
return np.array([(factor, split_value, left, right), ],
dtype='|i4, f4, i4, i4')
def query_point(self, point):
node_index = 0
while self.rel_tree[node_index][0] != self.LEAF:
node = self.rel_tree[node_index]
split_factor = node[0]
split_value = node[1]
if point[split_factor] <= split_value:
# Recurse into left sub-tree.
node_index += node[2]
else:
node_index += node[3]
v = self.rel_tree[node_index][1]
return v
def query(self, points):
"""
@summary: Estimate a set of test points given the model we built.
@param points: should be a numpy array with each row corresponding to a specific query.
@returns the estimated values according to the saved model.
"""
query_point = lambda p: self.query_point(p)
r = np.apply_along_axis(query_point, 1, points)
return r
def build_tree(self, xs, y):
"""
@summary: Build a decision tree from the training data.
@param dataX: X values of data to add
@param dataY: the Y training values
"""
assert(xs.shape[0] == y.shape[0])
assert(xs.shape[0] > 0) # If this is 0 something went wrong.
if xs.shape[0] <= self.leaf_size:
value = np.mean(y)
if value < -0.3:
value = -1
elif value > 0.3:
value = 1
else:
value = 0
return self.create_node(self.LEAF, value, self.NA, self.NA)
if np.all(y[0] == y):
return self.create_node(self.LEAF, y[0], self.NA, self.NA)
i, split_value = self.get_i_and_split_value(xs, y)
select_l = xs[:, i] <= split_value
select_r = xs[:, i] > split_value
lt = self.build_tree(xs[select_l], y[select_l])
rt = self.build_tree(xs[select_r], y[select_r])
root = self.create_node(i, split_value, 1, lt.shape[0] + 1)
root = np.concatenate([root, lt, rt])
return root
def addEvidence(self, data_x, data_y):
"""
@summary: Add training data to learner
@param dataX: X values of data to add
@param dataY: the Y training values
"""
self.rel_tree = self.build_tree(data_x, data_y)

View File

@ -0,0 +1,47 @@
import numpy as np
from AbstractTreeLearner import AbstractTreeLearner
class BagLearner(AbstractTreeLearner):
def __init__(self, learner, bags=9, boost=False, verbose=False, kwargs={}):
self.learner = learner
self.verbose = verbose
self.bags = bags
self.learners = [learner(**kwargs) for _ in range(bags)]
def get_bag(self, data_x, data_y):
num_items = int(data_x.shape[0] * 0.5) # 50% of samples
bag_x, bag_y = [], []
for _ in range(num_items):
i = np.random.randint(0, data_x.shape[0])
bag_x.append(data_x[i,:])
bag_y.append(data_y[i])
return np.array(bag_x), np.array(bag_y)
def addEvidence(self, data_x, data_y):
"""
@summary: Add training data to learner
@param dataX: X values of data to add
@param dataY: the Y training values
"""
for learner in self.learners:
x, y = self.get_bag(data_x, data_y)
learner.addEvidence(x, y)
def query(self, points):
"""
@summary: Estimate a set of test points given the model we built.
@param points: numpy array with each row corresponding to a query.
@returns the estimated values according to the saved model.
"""
def to_discret(m):
print(m)
if m < -0.5:
return -1
elif m > 0.5:
return 1
return 0
m = np.mean([l.query(points) for l in self.learners], axis=0)
return m
# return np.apply_along_axis(to_discret, 1, m)

View File

@ -0,0 +1,30 @@
import numpy as np
from AbstractTreeLearner import AbstractTreeLearner
class RTLearner(AbstractTreeLearner):
def __init__(self, leaf_size = 1, verbose = False):
self.leaf_size = leaf_size
self.verbose = verbose
def get_i_and_split_value(self, xs, y):
"""
@summary: Pick a random i and split value.
Make sure that not all X are the same for i and also pick
different values to average the split_value from.
"""
i = np.random.randint(0, xs.shape[1])
while np.all(xs[0,i] == xs[:,i]):
i = np.random.randint(0, xs.shape[1])
# I don't know about the performance of this, but at least it
# terminates reliably. If the two elements are the same something is
# wrong.
a = np.array(list(set(xs[:, i])))
r1, r2 = np.random.choice(a, size = 2, replace = False)
assert(r1 != r2)
split_value = (r1 + r2) / 2.0
return i, split_value