Add project 5 sources.
1
p5_classification/VERSION
Normal file
@ -0,0 +1 @@
|
||||
v1.001
|
16
p5_classification/answers.py
Normal file
@ -0,0 +1,16 @@
|
||||
# answers.py
|
||||
# ----------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
def q2():
|
||||
"*** YOUR CODE HERE ***"
|
351
p5_classification/autograder.py
Normal file
@ -0,0 +1,351 @@
|
||||
# autograder.py
|
||||
# -------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
# imports from python standard library
|
||||
import grading
|
||||
import imp
|
||||
import optparse
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
import projectParams
|
||||
import random
|
||||
random.seed(0)
|
||||
try:
|
||||
from pacman import GameState
|
||||
except:
|
||||
pass
|
||||
|
||||
# register arguments and set default values
|
||||
def readCommand(argv):
|
||||
parser = optparse.OptionParser(description = 'Run public tests on student code')
|
||||
parser.set_defaults(generateSolutions=False, edxOutput=False, muteOutput=False, printTestCase=False, noGraphics=False)
|
||||
parser.add_option('--test-directory',
|
||||
dest = 'testRoot',
|
||||
default = 'test_cases',
|
||||
help = 'Root test directory which contains subdirectories corresponding to each question')
|
||||
parser.add_option('--student-code',
|
||||
dest = 'studentCode',
|
||||
default = projectParams.STUDENT_CODE_DEFAULT,
|
||||
help = 'comma separated list of student code files')
|
||||
parser.add_option('--code-directory',
|
||||
dest = 'codeRoot',
|
||||
default = "",
|
||||
help = 'Root directory containing the student and testClass code')
|
||||
parser.add_option('--test-case-code',
|
||||
dest = 'testCaseCode',
|
||||
default = projectParams.PROJECT_TEST_CLASSES,
|
||||
help = 'class containing testClass classes for this project')
|
||||
parser.add_option('--generate-solutions',
|
||||
dest = 'generateSolutions',
|
||||
action = 'store_true',
|
||||
help = 'Write solutions generated to .solution file')
|
||||
parser.add_option('--edx-output',
|
||||
dest = 'edxOutput',
|
||||
action = 'store_true',
|
||||
help = 'Generate edX output files')
|
||||
parser.add_option('--mute',
|
||||
dest = 'muteOutput',
|
||||
action = 'store_true',
|
||||
help = 'Mute output from executing tests')
|
||||
parser.add_option('--print-tests', '-p',
|
||||
dest = 'printTestCase',
|
||||
action = 'store_true',
|
||||
help = 'Print each test case before running them.')
|
||||
parser.add_option('--test', '-t',
|
||||
dest = 'runTest',
|
||||
default = None,
|
||||
help = 'Run one particular test. Relative to test root.')
|
||||
parser.add_option('--question', '-q',
|
||||
dest = 'gradeQuestion',
|
||||
default = None,
|
||||
help = 'Grade one particular question.')
|
||||
parser.add_option('--no-graphics',
|
||||
dest = 'noGraphics',
|
||||
action = 'store_true',
|
||||
help = 'No graphics display for pacman games.')
|
||||
(options, args) = parser.parse_args(argv)
|
||||
return options
|
||||
|
||||
|
||||
# confirm we should author solution files
|
||||
def confirmGenerate():
|
||||
print 'WARNING: this action will overwrite any solution files.'
|
||||
print 'Are you sure you want to proceed? (yes/no)'
|
||||
while True:
|
||||
ans = sys.stdin.readline().strip()
|
||||
if ans == 'yes':
|
||||
break
|
||||
elif ans == 'no':
|
||||
sys.exit(0)
|
||||
else:
|
||||
print 'please answer either "yes" or "no"'
|
||||
|
||||
|
||||
# TODO: Fix this so that it tracebacks work correctly
|
||||
# Looking at source of the traceback module, presuming it works
|
||||
# the same as the intepreters, it uses co_filename. This is,
|
||||
# however, a readonly attribute.
|
||||
def setModuleName(module, filename):
|
||||
functionType = type(confirmGenerate)
|
||||
classType = type(optparse.Option)
|
||||
|
||||
for i in dir(module):
|
||||
o = getattr(module, i)
|
||||
if hasattr(o, '__file__'): continue
|
||||
|
||||
if type(o) == functionType:
|
||||
setattr(o, '__file__', filename)
|
||||
elif type(o) == classType:
|
||||
setattr(o, '__file__', filename)
|
||||
# TODO: assign member __file__'s?
|
||||
#print i, type(o)
|
||||
|
||||
|
||||
#from cStringIO import StringIO
|
||||
|
||||
def loadModuleString(moduleSource):
|
||||
# Below broken, imp doesn't believe its being passed a file:
|
||||
# ValueError: load_module arg#2 should be a file or None
|
||||
#
|
||||
#f = StringIO(moduleCodeDict[k])
|
||||
#tmp = imp.load_module(k, f, k, (".py", "r", imp.PY_SOURCE))
|
||||
tmp = imp.new_module(k)
|
||||
exec moduleCodeDict[k] in tmp.__dict__
|
||||
setModuleName(tmp, k)
|
||||
return tmp
|
||||
|
||||
import py_compile
|
||||
|
||||
def loadModuleFile(moduleName, filePath):
|
||||
with open(filePath, 'r') as f:
|
||||
return imp.load_module(moduleName, f, "%s.py" % moduleName, (".py", "r", imp.PY_SOURCE))
|
||||
|
||||
|
||||
def readFile(path, root=""):
|
||||
"Read file from disk at specified path and return as string"
|
||||
with open(os.path.join(root, path), 'r') as handle:
|
||||
return handle.read()
|
||||
|
||||
|
||||
#######################################################################
|
||||
# Error Hint Map
|
||||
#######################################################################
|
||||
|
||||
# TODO: use these
|
||||
ERROR_HINT_MAP = {
|
||||
'q1': {
|
||||
"<type 'exceptions.IndexError'>": """
|
||||
We noticed that your project threw an IndexError on q1.
|
||||
While many things may cause this, it may have been from
|
||||
assuming a certain number of successors from a state space
|
||||
or assuming a certain number of actions available from a given
|
||||
state. Try making your code more general (no hardcoded indices)
|
||||
and submit again!
|
||||
"""
|
||||
},
|
||||
'q3': {
|
||||
"<type 'exceptions.AttributeError'>": """
|
||||
We noticed that your project threw an AttributeError on q3.
|
||||
While many things may cause this, it may have been from assuming
|
||||
a certain size or structure to the state space. For example, if you have
|
||||
a line of code assuming that the state is (x, y) and we run your code
|
||||
on a state space with (x, y, z), this error could be thrown. Try
|
||||
making your code more general and submit again!
|
||||
|
||||
"""
|
||||
}
|
||||
}
|
||||
|
||||
import pprint
|
||||
|
||||
def splitStrings(d):
|
||||
d2 = dict(d)
|
||||
for k in d:
|
||||
if k[0:2] == "__":
|
||||
del d2[k]
|
||||
continue
|
||||
if d2[k].find("\n") >= 0:
|
||||
d2[k] = d2[k].split("\n")
|
||||
return d2
|
||||
|
||||
|
||||
def printTest(testDict, solutionDict):
|
||||
pp = pprint.PrettyPrinter(indent=4)
|
||||
print "Test case:"
|
||||
for line in testDict["__raw_lines__"]:
|
||||
print " |", line
|
||||
print "Solution:"
|
||||
for line in solutionDict["__raw_lines__"]:
|
||||
print " |", line
|
||||
|
||||
|
||||
def runTest(testName, moduleDict, printTestCase=False, display=None):
|
||||
import testParser
|
||||
import testClasses
|
||||
for module in moduleDict:
|
||||
setattr(sys.modules[__name__], module, moduleDict[module])
|
||||
|
||||
testDict = testParser.TestParser(testName + ".test").parse()
|
||||
solutionDict = testParser.TestParser(testName + ".solution").parse()
|
||||
test_out_file = os.path.join('%s.test_output' % testName)
|
||||
testDict['test_out_file'] = test_out_file
|
||||
testClass = getattr(projectTestClasses, testDict['class'])
|
||||
|
||||
questionClass = getattr(testClasses, 'Question')
|
||||
question = questionClass({'max_points': 0}, display)
|
||||
testCase = testClass(question, testDict)
|
||||
|
||||
if printTestCase:
|
||||
printTest(testDict, solutionDict)
|
||||
|
||||
# This is a fragile hack to create a stub grades object
|
||||
grades = grading.Grades(projectParams.PROJECT_NAME, [(None,0)])
|
||||
testCase.execute(grades, moduleDict, solutionDict)
|
||||
|
||||
|
||||
# returns all the tests you need to run in order to run question
|
||||
def getDepends(testParser, testRoot, question):
|
||||
allDeps = [question]
|
||||
questionDict = testParser.TestParser(os.path.join(testRoot, question, 'CONFIG')).parse()
|
||||
if 'depends' in questionDict:
|
||||
depends = questionDict['depends'].split()
|
||||
for d in depends:
|
||||
# run dependencies first
|
||||
allDeps = getDepends(testParser, testRoot, d) + allDeps
|
||||
return allDeps
|
||||
|
||||
# get list of questions to grade
|
||||
def getTestSubdirs(testParser, testRoot, questionToGrade):
|
||||
problemDict = testParser.TestParser(os.path.join(testRoot, 'CONFIG')).parse()
|
||||
if questionToGrade != None:
|
||||
questions = getDepends(testParser, testRoot, questionToGrade)
|
||||
if len(questions) > 1:
|
||||
print 'Note: due to dependencies, the following tests will be run: %s' % ' '.join(questions)
|
||||
return questions
|
||||
if 'order' in problemDict:
|
||||
return problemDict['order'].split()
|
||||
return sorted(os.listdir(testRoot))
|
||||
|
||||
|
||||
# evaluate student code
|
||||
def evaluate(generateSolutions, testRoot, moduleDict, exceptionMap=ERROR_HINT_MAP, edxOutput=False, muteOutput=False,
|
||||
printTestCase=False, questionToGrade=None, display=None):
|
||||
# imports of testbench code. note that the testClasses import must follow
|
||||
# the import of student code due to dependencies
|
||||
import testParser
|
||||
import testClasses
|
||||
for module in moduleDict:
|
||||
setattr(sys.modules[__name__], module, moduleDict[module])
|
||||
|
||||
questions = []
|
||||
questionDicts = {}
|
||||
test_subdirs = getTestSubdirs(testParser, testRoot, questionToGrade)
|
||||
for q in test_subdirs:
|
||||
subdir_path = os.path.join(testRoot, q)
|
||||
if not os.path.isdir(subdir_path) or q[0] == '.':
|
||||
continue
|
||||
|
||||
# create a question object
|
||||
questionDict = testParser.TestParser(os.path.join(subdir_path, 'CONFIG')).parse()
|
||||
questionClass = getattr(testClasses, questionDict['class'])
|
||||
question = questionClass(questionDict, display)
|
||||
questionDicts[q] = questionDict
|
||||
|
||||
# load test cases into question
|
||||
tests = filter(lambda t: re.match('[^#~.].*\.test\Z', t), os.listdir(subdir_path))
|
||||
tests = map(lambda t: re.match('(.*)\.test\Z', t).group(1), tests)
|
||||
for t in sorted(tests):
|
||||
test_file = os.path.join(subdir_path, '%s.test' % t)
|
||||
solution_file = os.path.join(subdir_path, '%s.solution' % t)
|
||||
test_out_file = os.path.join(subdir_path, '%s.test_output' % t)
|
||||
testDict = testParser.TestParser(test_file).parse()
|
||||
if testDict.get("disabled", "false").lower() == "true":
|
||||
continue
|
||||
testDict['test_out_file'] = test_out_file
|
||||
testClass = getattr(projectTestClasses, testDict['class'])
|
||||
testCase = testClass(question, testDict)
|
||||
def makefun(testCase, solution_file):
|
||||
if generateSolutions:
|
||||
# write solution file to disk
|
||||
return lambda grades: testCase.writeSolution(moduleDict, solution_file)
|
||||
else:
|
||||
# read in solution dictionary and pass as an argument
|
||||
testDict = testParser.TestParser(test_file).parse()
|
||||
solutionDict = testParser.TestParser(solution_file).parse()
|
||||
if printTestCase:
|
||||
return lambda grades: printTest(testDict, solutionDict) or testCase.execute(grades, moduleDict, solutionDict)
|
||||
else:
|
||||
return lambda grades: testCase.execute(grades, moduleDict, solutionDict)
|
||||
question.addTestCase(testCase, makefun(testCase, solution_file))
|
||||
|
||||
# Note extra function is necessary for scoping reasons
|
||||
def makefun(question):
|
||||
return lambda grades: question.execute(grades)
|
||||
setattr(sys.modules[__name__], q, makefun(question))
|
||||
questions.append((q, question.getMaxPoints()))
|
||||
|
||||
grades = grading.Grades(projectParams.PROJECT_NAME, questions, edxOutput=edxOutput, muteOutput=muteOutput)
|
||||
if questionToGrade == None:
|
||||
for q in questionDicts:
|
||||
for prereq in questionDicts[q].get('depends', '').split():
|
||||
grades.addPrereq(q, prereq)
|
||||
|
||||
grades.grade(sys.modules[__name__], bonusPic = projectParams.BONUS_PIC)
|
||||
return grades.points
|
||||
|
||||
|
||||
|
||||
def getDisplay(graphicsByDefault, options=None):
|
||||
graphics = graphicsByDefault
|
||||
if options is not None and options.noGraphics:
|
||||
graphics = False
|
||||
if graphics:
|
||||
try:
|
||||
import graphicsDisplay
|
||||
return graphicsDisplay.PacmanGraphics(1, frameTime=.05)
|
||||
except ImportError:
|
||||
pass
|
||||
import textDisplay
|
||||
return textDisplay.NullGraphics()
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
options = readCommand(sys.argv)
|
||||
if options.generateSolutions:
|
||||
confirmGenerate()
|
||||
codePaths = options.studentCode.split(',')
|
||||
# moduleCodeDict = {}
|
||||
# for cp in codePaths:
|
||||
# moduleName = re.match('.*?([^/]*)\.py', cp).group(1)
|
||||
# moduleCodeDict[moduleName] = readFile(cp, root=options.codeRoot)
|
||||
# moduleCodeDict['projectTestClasses'] = readFile(options.testCaseCode, root=options.codeRoot)
|
||||
# moduleDict = loadModuleDict(moduleCodeDict)
|
||||
|
||||
moduleDict = {}
|
||||
for cp in codePaths:
|
||||
moduleName = re.match('.*?([^/]*)\.py', cp).group(1)
|
||||
moduleDict[moduleName] = loadModuleFile(moduleName, os.path.join(options.codeRoot, cp))
|
||||
moduleName = re.match('.*?([^/]*)\.py', options.testCaseCode).group(1)
|
||||
moduleDict['projectTestClasses'] = loadModuleFile(moduleName, os.path.join(options.codeRoot, options.testCaseCode))
|
||||
|
||||
|
||||
if options.runTest != None:
|
||||
runTest(options.runTest, moduleDict, printTestCase=options.printTestCase, display=getDisplay(True, options))
|
||||
else:
|
||||
evaluate(options.generateSolutions, options.testRoot, moduleDict,
|
||||
edxOutput=options.edxOutput, muteOutput=options.muteOutput, printTestCase=options.printTestCase,
|
||||
questionToGrade=options.gradeQuestion, display=getDisplay(options.gradeQuestion!=None, options))
|
75
p5_classification/classificationAgents.py
Normal file
@ -0,0 +1,75 @@
|
||||
# classificationAgents.py
|
||||
# -----------------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
# pacmanAgents.py
|
||||
# ---------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to
|
||||
# http://inst.eecs.berkeley.edu/~cs188/pacman/pacman.html
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from pacman import Directions
|
||||
from game import Agent
|
||||
|
||||
import random
|
||||
import game
|
||||
import util
|
||||
|
||||
class DummyOptions:
|
||||
def __init__(self):
|
||||
self.data = "pacman"
|
||||
self.training = 25000
|
||||
self.test = 100
|
||||
self.odds = False
|
||||
self.weights = False
|
||||
|
||||
|
||||
import perceptron_pacman
|
||||
|
||||
class ClassifierAgent(Agent):
|
||||
def __init__(self, trainingData=None, validationData=None, classifierType="perceptron", agentToClone=None, numTraining=3):
|
||||
from dataClassifier import runClassifier, enhancedFeatureExtractorPacman
|
||||
legalLabels = ['Stop', 'West', 'East', 'North', 'South']
|
||||
if(classifierType == "perceptron"):
|
||||
classifier = perceptron_pacman.PerceptronClassifierPacman(legalLabels,numTraining)
|
||||
self.classifier = classifier
|
||||
self.featureFunction = enhancedFeatureExtractorPacman
|
||||
args = {'featureFunction': self.featureFunction,
|
||||
'classifier':self.classifier,
|
||||
'printImage':None,
|
||||
'trainingData':trainingData,
|
||||
'validationData':validationData,
|
||||
'agentToClone': agentToClone,
|
||||
}
|
||||
options = DummyOptions()
|
||||
options.classifier = classifierType
|
||||
runClassifier(args, options)
|
||||
def getAction(self, state):
|
||||
from dataClassifier import runClassifier, enhancedFeatureExtractorPacman
|
||||
features = self.featureFunction(state)
|
||||
|
||||
action = self.classifier.classify([features])[0]
|
||||
|
||||
return action
|
||||
|
||||
def scoreEvaluation(state):
|
||||
return state.getScore()
|
62
p5_classification/classificationMethod.py
Normal file
@ -0,0 +1,62 @@
|
||||
# classificationMethod.py
|
||||
# -----------------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
# This file contains the abstract class ClassificationMethod
|
||||
|
||||
class ClassificationMethod:
|
||||
"""
|
||||
ClassificationMethod is the abstract superclass of
|
||||
- MostFrequentClassifier
|
||||
- NaiveBayesClassifier
|
||||
- PerceptronClassifier
|
||||
- MiraClassifier
|
||||
|
||||
As such, you need not add any code to this file. You can write
|
||||
all of your implementation code in the files for the individual
|
||||
classification methods listed above.
|
||||
"""
|
||||
def __init__(self, legalLabels):
|
||||
"""
|
||||
For digits dataset, the set of legal labels will be 0,1,..,9
|
||||
For faces dataset, the set of legal labels will be 0 (non-face) or 1 (face)
|
||||
"""
|
||||
self.legalLabels = legalLabels
|
||||
|
||||
|
||||
def train(self, trainingData, trainingLabels, validationData, validationLabels):
|
||||
"""
|
||||
This is the supervised training function for the classifier. Two sets of
|
||||
labeled data are passed in: a large training set and a small validation set.
|
||||
|
||||
Many types of classifiers have a common training structure in practice: using
|
||||
training data for the main supervised training loop but tuning certain parameters
|
||||
with a small held-out validation set.
|
||||
|
||||
For some classifiers (naive Bayes, MIRA), you will need to return the parameters'
|
||||
values after training and tuning step.
|
||||
|
||||
To make the classifier generic to multiple problems, the data should be represented
|
||||
as lists of Counters containing feature descriptions and their counts.
|
||||
"""
|
||||
abstract
|
||||
|
||||
def classify(self, data):
|
||||
"""
|
||||
This function returns a list of labels, each drawn from the set of legal labels
|
||||
provided to the classifier upon construction.
|
||||
|
||||
To make the classifier generic to multiple problems, the data should be represented
|
||||
as lists of Counters containing feature descriptions and their counts.
|
||||
"""
|
||||
abstract
|
276
p5_classification/classificationTestClasses.py
Normal file
@ -0,0 +1,276 @@
|
||||
# classificationTestClasses.py
|
||||
# ----------------------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from hashlib import sha1
|
||||
import testClasses
|
||||
# import json
|
||||
|
||||
from collections import defaultdict
|
||||
from pprint import PrettyPrinter
|
||||
pp = PrettyPrinter()
|
||||
|
||||
# from game import Agent
|
||||
from pacman import GameState
|
||||
# from ghostAgents import RandomGhost, DirectionalGhost
|
||||
import random, math, traceback, sys, os
|
||||
# import layout, pacman
|
||||
# import autograder
|
||||
# import grading
|
||||
|
||||
import dataClassifier, samples
|
||||
|
||||
VERBOSE = False
|
||||
|
||||
|
||||
|
||||
# Data sets
|
||||
# ---------
|
||||
|
||||
EVAL_MULTIPLE_CHOICE=True
|
||||
|
||||
numTraining = 100
|
||||
TEST_SET_SIZE = 100
|
||||
DIGIT_DATUM_WIDTH=28
|
||||
DIGIT_DATUM_HEIGHT=28
|
||||
|
||||
def readDigitData(trainingSize=100, testSize=100):
|
||||
rootdata = 'digitdata/'
|
||||
# loading digits data
|
||||
rawTrainingData = samples.loadDataFile(rootdata + 'trainingimages', trainingSize,DIGIT_DATUM_WIDTH,DIGIT_DATUM_HEIGHT)
|
||||
trainingLabels = samples.loadLabelsFile(rootdata + "traininglabels", trainingSize)
|
||||
rawValidationData = samples.loadDataFile(rootdata + "validationimages", TEST_SET_SIZE,DIGIT_DATUM_WIDTH,DIGIT_DATUM_HEIGHT)
|
||||
validationLabels = samples.loadLabelsFile(rootdata + "validationlabels", TEST_SET_SIZE)
|
||||
rawTestData = samples.loadDataFile("digitdata/testimages", testSize,DIGIT_DATUM_WIDTH,DIGIT_DATUM_HEIGHT)
|
||||
testLabels = samples.loadLabelsFile("digitdata/testlabels", testSize)
|
||||
try:
|
||||
print "Extracting features..."
|
||||
featureFunction = dataClassifier.basicFeatureExtractorDigit
|
||||
trainingData = map(featureFunction, rawTrainingData)
|
||||
validationData = map(featureFunction, rawValidationData)
|
||||
testData = map(featureFunction, rawTestData)
|
||||
except:
|
||||
display("An exception was raised while extracting basic features: \n %s" % getExceptionTraceBack())
|
||||
return (trainingData, trainingLabels, validationData, validationLabels, rawTrainingData, rawValidationData, testData, testLabels, rawTestData)
|
||||
|
||||
def readSuicideData(trainingSize=100, testSize=100):
|
||||
rootdata = 'pacmandata'
|
||||
rawTrainingData, trainingLabels = samples.loadPacmanData(rootdata + '/suicide_training.pkl', trainingSize)
|
||||
rawValidationData, validationLabels = samples.loadPacmanData(rootdata + '/suicide_validation.pkl', testSize)
|
||||
rawTestData, testLabels = samples.loadPacmanData(rootdata + '/suicide_test.pkl', testSize)
|
||||
trainingData = []
|
||||
validationData = []
|
||||
testData = []
|
||||
return (trainingData, trainingLabels, validationData, validationLabels, rawTrainingData, rawValidationData, testData, testLabels, rawTestData)
|
||||
|
||||
def readContestData(trainingSize=100, testSize=100):
|
||||
rootdata = 'pacmandata'
|
||||
rawTrainingData, trainingLabels = samples.loadPacmanData(rootdata + '/contest_training.pkl', trainingSize)
|
||||
rawValidationData, validationLabels = samples.loadPacmanData(rootdata + '/contest_validation.pkl', testSize)
|
||||
rawTestData, testLabels = samples.loadPacmanData(rootdata + '/contest_test.pkl', testSize)
|
||||
trainingData = []
|
||||
validationData = []
|
||||
testData = []
|
||||
return (trainingData, trainingLabels, validationData, validationLabels, rawTrainingData, rawValidationData, testData, testLabels, rawTestData)
|
||||
|
||||
|
||||
smallDigitData = readDigitData(20)
|
||||
bigDigitData = readDigitData(1000)
|
||||
|
||||
suicideData = readSuicideData(1000)
|
||||
contestData = readContestData(1000)
|
||||
|
||||
def tinyDataSet():
|
||||
def count(m,b,h):
|
||||
c = util.Counter();
|
||||
c['m'] = m;
|
||||
c['b'] = b;
|
||||
c['h'] = h;
|
||||
return c;
|
||||
|
||||
training = [count(0,0,0), count(1,0,0), count(1,1,0), count(0,1,1), count(1,0,1), count(1,1,1)]
|
||||
trainingLabels = [1, 1, 1 , 1 , -1 , -1]
|
||||
|
||||
validation = [count(1,0,1)]
|
||||
validationLabels = [ 1]
|
||||
|
||||
test = [count(1,0,1)]
|
||||
testLabels = [-1]
|
||||
|
||||
return (training,trainingLabels,validation,validationLabels,test,testLabels);
|
||||
|
||||
|
||||
def tinyDataSetPeceptronAndMira():
|
||||
def count(m,b,h):
|
||||
c = util.Counter();
|
||||
c['m'] = m;
|
||||
c['b'] = b;
|
||||
c['h'] = h;
|
||||
return c;
|
||||
|
||||
training = [count(1,0,0), count(1,1,0), count(0,1,1), count(1,0,1), count(1,1,1)]
|
||||
trainingLabels = [1, 1, 1, -1 , -1]
|
||||
|
||||
validation = [count(1,0,1)]
|
||||
validationLabels = [ 1]
|
||||
|
||||
test = [count(1,0,1)]
|
||||
testLabels = [-1]
|
||||
|
||||
return (training,trainingLabels,validation,validationLabels,test,testLabels);
|
||||
|
||||
|
||||
DATASETS = {
|
||||
"smallDigitData": lambda: smallDigitData,
|
||||
"bigDigitData": lambda: bigDigitData,
|
||||
"tinyDataSet": tinyDataSet,
|
||||
"tinyDataSetPeceptronAndMira": tinyDataSetPeceptronAndMira,
|
||||
"suicideData": lambda: suicideData,
|
||||
"contestData": lambda: contestData
|
||||
}
|
||||
|
||||
DATASETS_LEGAL_LABELS = {
|
||||
"smallDigitData": range(10),
|
||||
"bigDigitData": range(10),
|
||||
"tinyDataSet": [-1,1],
|
||||
"tinyDataSetPeceptronAndMira": [-1,1],
|
||||
"suicideData": ["EAST", 'WEST', 'NORTH', 'SOUTH', 'STOP'],
|
||||
"contestData": ["EAST", 'WEST', 'NORTH', 'SOUTH', 'STOP']
|
||||
}
|
||||
|
||||
|
||||
# Test classes
|
||||
# ------------
|
||||
|
||||
def getAccuracy(data, classifier, featureFunction=dataClassifier.basicFeatureExtractorDigit):
|
||||
trainingData, trainingLabels, validationData, validationLabels, rawTrainingData, rawValidationData, testData, testLabels, rawTestData = data
|
||||
if featureFunction != dataClassifier.basicFeatureExtractorDigit:
|
||||
trainingData = map(featureFunction, rawTrainingData)
|
||||
validationData = map(featureFunction, rawValidationData)
|
||||
testData = map(featureFunction, rawTestData)
|
||||
classifier.train(trainingData, trainingLabels, validationData, validationLabels)
|
||||
guesses = classifier.classify(testData)
|
||||
correct = [guesses[i] == testLabels[i] for i in range(len(testLabels))].count(True)
|
||||
acc = 100.0 * correct / len(testLabels)
|
||||
serialized_guesses = ", ".join([str(guesses[i]) for i in range(len(testLabels))])
|
||||
print str(correct), ("correct out of " + str(len(testLabels)) + " (%.1f%%).") % (acc)
|
||||
return acc, serialized_guesses
|
||||
|
||||
|
||||
class GradeClassifierTest(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(GradeClassifierTest, self).__init__(question, testDict)
|
||||
|
||||
self.classifierModule = testDict['classifierModule']
|
||||
self.classifierClass = testDict['classifierClass']
|
||||
self.datasetName = testDict['datasetName']
|
||||
|
||||
self.accuracyScale = int(testDict['accuracyScale'])
|
||||
self.accuracyThresholds = [int(s) for s in testDict.get('accuracyThresholds','').split()]
|
||||
self.exactOutput = testDict['exactOutput'].lower() == "true"
|
||||
|
||||
self.automaticTuning = testDict['automaticTuning'].lower() == "true" if 'automaticTuning' in testDict else None
|
||||
self.max_iterations = int(testDict['max_iterations']) if 'max_iterations' in testDict else None
|
||||
self.featureFunction = testDict['featureFunction'] if 'featureFunction' in testDict else 'basicFeatureExtractorDigit'
|
||||
|
||||
self.maxPoints = len(self.accuracyThresholds) * self.accuracyScale
|
||||
|
||||
|
||||
def grade_classifier(self, moduleDict):
|
||||
featureFunction = getattr(dataClassifier, self.featureFunction)
|
||||
data = DATASETS[self.datasetName]()
|
||||
legalLabels = DATASETS_LEGAL_LABELS[self.datasetName]
|
||||
|
||||
classifierClass = getattr(moduleDict[self.classifierModule], self.classifierClass)
|
||||
|
||||
if self.max_iterations != None:
|
||||
classifier = classifierClass(legalLabels, self.max_iterations)
|
||||
else:
|
||||
classifier = classifierClass(legalLabels)
|
||||
|
||||
if self.automaticTuning != None:
|
||||
classifier.automaticTuning = self.automaticTuning
|
||||
|
||||
return getAccuracy(data, classifier, featureFunction=featureFunction)
|
||||
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
accuracy, guesses = self.grade_classifier(moduleDict)
|
||||
|
||||
# Either grade them on the accuracy of their classifer,
|
||||
# or their exact
|
||||
if self.exactOutput:
|
||||
gold_guesses = solutionDict['guesses']
|
||||
if guesses == gold_guesses:
|
||||
totalPoints = self.maxPoints
|
||||
else:
|
||||
self.addMessage("Incorrect classification after training:")
|
||||
self.addMessage(" student classifications: " + guesses)
|
||||
self.addMessage(" correct classifications: " + gold_guesses)
|
||||
totalPoints = 0
|
||||
else:
|
||||
# Grade accuracy
|
||||
totalPoints = 0
|
||||
for threshold in self.accuracyThresholds:
|
||||
if accuracy >= threshold:
|
||||
totalPoints += self.accuracyScale
|
||||
|
||||
# Print grading schedule
|
||||
self.addMessage("%s correct (%s of %s points)" % (accuracy, totalPoints, self.maxPoints))
|
||||
self.addMessage(" Grading scheme:")
|
||||
self.addMessage(" < %s: 0 points" % (self.accuracyThresholds[0],))
|
||||
for idx, threshold in enumerate(self.accuracyThresholds):
|
||||
self.addMessage(" >= %s: %s points" % (threshold, (idx+1)*self.accuracyScale))
|
||||
|
||||
return self.testPartial(grades, totalPoints, self.maxPoints)
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# This is the solution file for %s.\n' % self.path)
|
||||
|
||||
if self.exactOutput:
|
||||
_, guesses = self.grade_classifier(moduleDict)
|
||||
handle.write('guesses: "%s"' % (guesses,))
|
||||
|
||||
handle.close()
|
||||
return True
|
||||
|
||||
|
||||
|
||||
|
||||
class MultipleChoiceTest(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(MultipleChoiceTest, self).__init__(question, testDict)
|
||||
self.ans = testDict['result']
|
||||
self.question = testDict['question']
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
studentSolution = str(getattr(moduleDict['answers'], self.question)())
|
||||
encryptedSolution = sha1(studentSolution.strip().lower()).hexdigest()
|
||||
if encryptedSolution == self.ans:
|
||||
return self.testPass(grades)
|
||||
else:
|
||||
self.addMessage("Solution is not correct.")
|
||||
self.addMessage("Student solution: %s" % studentSolution)
|
||||
return self.testFail(grades)
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# This is the solution file for %s.\n' % self.path)
|
||||
handle.write('# File intentionally blank.\n')
|
||||
handle.close()
|
||||
return True
|
||||
|
||||
|
BIN
p5_classification/data.zip
Normal file
431
p5_classification/dataClassifier.py
Normal file
@ -0,0 +1,431 @@
|
||||
# dataClassifier.py
|
||||
# -----------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
# This file contains feature extraction methods and harness
|
||||
# code for data classification
|
||||
|
||||
import mostFrequent
|
||||
import naiveBayes
|
||||
import perceptron
|
||||
import perceptron_pacman
|
||||
import mira
|
||||
import samples
|
||||
import sys
|
||||
import util
|
||||
from pacman import GameState
|
||||
|
||||
TEST_SET_SIZE = 100
|
||||
DIGIT_DATUM_WIDTH=28
|
||||
DIGIT_DATUM_HEIGHT=28
|
||||
FACE_DATUM_WIDTH=60
|
||||
FACE_DATUM_HEIGHT=70
|
||||
|
||||
|
||||
def basicFeatureExtractorDigit(datum):
|
||||
"""
|
||||
Returns a set of pixel features indicating whether
|
||||
each pixel in the provided datum is white (0) or gray/black (1)
|
||||
"""
|
||||
a = datum.getPixels()
|
||||
|
||||
features = util.Counter()
|
||||
for x in range(DIGIT_DATUM_WIDTH):
|
||||
for y in range(DIGIT_DATUM_HEIGHT):
|
||||
if datum.getPixel(x, y) > 0:
|
||||
features[(x,y)] = 1
|
||||
else:
|
||||
features[(x,y)] = 0
|
||||
return features
|
||||
|
||||
def basicFeatureExtractorFace(datum):
|
||||
"""
|
||||
Returns a set of pixel features indicating whether
|
||||
each pixel in the provided datum is an edge (1) or no edge (0)
|
||||
"""
|
||||
a = datum.getPixels()
|
||||
|
||||
features = util.Counter()
|
||||
for x in range(FACE_DATUM_WIDTH):
|
||||
for y in range(FACE_DATUM_HEIGHT):
|
||||
if datum.getPixel(x, y) > 0:
|
||||
features[(x,y)] = 1
|
||||
else:
|
||||
features[(x,y)] = 0
|
||||
return features
|
||||
|
||||
def enhancedFeatureExtractorDigit(datum):
|
||||
"""
|
||||
Your feature extraction playground.
|
||||
|
||||
You should return a util.Counter() of features
|
||||
for this datum (datum is of type samples.Datum).
|
||||
|
||||
## DESCRIBE YOUR ENHANCED FEATURES HERE...
|
||||
|
||||
##
|
||||
"""
|
||||
features = basicFeatureExtractorDigit(datum)
|
||||
|
||||
"*** YOUR CODE HERE ***"
|
||||
util.raiseNotDefined()
|
||||
|
||||
return features
|
||||
|
||||
|
||||
|
||||
def basicFeatureExtractorPacman(state):
|
||||
"""
|
||||
A basic feature extraction function.
|
||||
|
||||
You should return a util.Counter() of features
|
||||
for each (state, action) pair along with a list of the legal actions
|
||||
|
||||
##
|
||||
"""
|
||||
features = util.Counter()
|
||||
for action in state.getLegalActions():
|
||||
successor = state.generateSuccessor(0, action)
|
||||
foodCount = successor.getFood().count()
|
||||
featureCounter = util.Counter()
|
||||
featureCounter['foodCount'] = foodCount
|
||||
features[action] = featureCounter
|
||||
return features, state.getLegalActions()
|
||||
|
||||
def enhancedFeatureExtractorPacman(state):
|
||||
"""
|
||||
Your feature extraction playground.
|
||||
|
||||
You should return a util.Counter() of features
|
||||
for each (state, action) pair along with a list of the legal actions
|
||||
|
||||
##
|
||||
"""
|
||||
|
||||
features = basicFeatureExtractorPacman(state)[0]
|
||||
for action in state.getLegalActions():
|
||||
features[action] = util.Counter(features[action], **enhancedPacmanFeatures(state, action))
|
||||
return features, state.getLegalActions()
|
||||
|
||||
def enhancedPacmanFeatures(state, action):
|
||||
"""
|
||||
For each state, this function is called with each legal action.
|
||||
It should return a counter with { <feature name> : <feature value>, ... }
|
||||
"""
|
||||
features = util.Counter()
|
||||
"*** YOUR CODE HERE ***"
|
||||
util.raiseNotDefined()
|
||||
return features
|
||||
|
||||
|
||||
def contestFeatureExtractorDigit(datum):
|
||||
"""
|
||||
Specify features to use for the minicontest
|
||||
"""
|
||||
features = basicFeatureExtractorDigit(datum)
|
||||
return features
|
||||
|
||||
def enhancedFeatureExtractorFace(datum):
|
||||
"""
|
||||
Your feature extraction playground for faces.
|
||||
It is your choice to modify this.
|
||||
"""
|
||||
features = basicFeatureExtractorFace(datum)
|
||||
return features
|
||||
|
||||
def analysis(classifier, guesses, testLabels, testData, rawTestData, printImage):
|
||||
"""
|
||||
This function is called after learning.
|
||||
Include any code that you want here to help you analyze your results.
|
||||
|
||||
Use the printImage(<list of pixels>) function to visualize features.
|
||||
|
||||
An example of use has been given to you.
|
||||
|
||||
- classifier is the trained classifier
|
||||
- guesses is the list of labels predicted by your classifier on the test set
|
||||
- testLabels is the list of true labels
|
||||
- testData is the list of training datapoints (as util.Counter of features)
|
||||
- rawTestData is the list of training datapoints (as samples.Datum)
|
||||
- printImage is a method to visualize the features
|
||||
(see its use in the odds ratio part in runClassifier method)
|
||||
|
||||
This code won't be evaluated. It is for your own optional use
|
||||
(and you can modify the signature if you want).
|
||||
"""
|
||||
|
||||
# Put any code here...
|
||||
# Example of use:
|
||||
# for i in range(len(guesses)):
|
||||
# prediction = guesses[i]
|
||||
# truth = testLabels[i]
|
||||
# if (prediction != truth):
|
||||
# print "==================================="
|
||||
# print "Mistake on example %d" % i
|
||||
# print "Predicted %d; truth is %d" % (prediction, truth)
|
||||
# print "Image: "
|
||||
# print rawTestData[i]
|
||||
# break
|
||||
|
||||
|
||||
## =====================
|
||||
## You don't have to modify any code below.
|
||||
## =====================
|
||||
|
||||
|
||||
class ImagePrinter:
|
||||
def __init__(self, width, height):
|
||||
self.width = width
|
||||
self.height = height
|
||||
|
||||
def printImage(self, pixels):
|
||||
"""
|
||||
Prints a Datum object that contains all pixels in the
|
||||
provided list of pixels. This will serve as a helper function
|
||||
to the analysis function you write.
|
||||
|
||||
Pixels should take the form
|
||||
[(2,2), (2, 3), ...]
|
||||
where each tuple represents a pixel.
|
||||
"""
|
||||
image = samples.Datum(None,self.width,self.height)
|
||||
for pix in pixels:
|
||||
try:
|
||||
# This is so that new features that you could define which
|
||||
# which are not of the form of (x,y) will not break
|
||||
# this image printer...
|
||||
x,y = pix
|
||||
image.pixels[x][y] = 2
|
||||
except:
|
||||
print "new features:", pix
|
||||
continue
|
||||
print image
|
||||
|
||||
def default(str):
|
||||
return str + ' [Default: %default]'
|
||||
|
||||
USAGE_STRING = """
|
||||
USAGE: python dataClassifier.py <options>
|
||||
EXAMPLES: (1) python dataClassifier.py
|
||||
- trains the default mostFrequent classifier on the digit dataset
|
||||
using the default 100 training examples and
|
||||
then test the classifier on test data
|
||||
(2) python dataClassifier.py -c naiveBayes -d digits -t 1000 -f -o -1 3 -2 6 -k 2.5
|
||||
- would run the naive Bayes classifier on 1000 training examples
|
||||
using the enhancedFeatureExtractorDigits function to get the features
|
||||
on the faces dataset, would use the smoothing parameter equals to 2.5, would
|
||||
test the classifier on the test data and performs an odd ratio analysis
|
||||
with label1=3 vs. label2=6
|
||||
"""
|
||||
|
||||
|
||||
def readCommand( argv ):
|
||||
"Processes the command used to run from the command line."
|
||||
from optparse import OptionParser
|
||||
parser = OptionParser(USAGE_STRING)
|
||||
|
||||
parser.add_option('-c', '--classifier', help=default('The type of classifier'), choices=['mostFrequent', 'nb', 'naiveBayes', 'perceptron', 'mira', 'minicontest'], default='mostFrequent')
|
||||
parser.add_option('-d', '--data', help=default('Dataset to use'), choices=['digits', 'faces', 'pacman'], default='digits')
|
||||
parser.add_option('-t', '--training', help=default('The size of the training set'), default=100, type="int")
|
||||
parser.add_option('-f', '--features', help=default('Whether to use enhanced features'), default=False, action="store_true")
|
||||
parser.add_option('-o', '--odds', help=default('Whether to compute odds ratios'), default=False, action="store_true")
|
||||
parser.add_option('-1', '--label1', help=default("First label in an odds ratio comparison"), default=0, type="int")
|
||||
parser.add_option('-2', '--label2', help=default("Second label in an odds ratio comparison"), default=1, type="int")
|
||||
parser.add_option('-w', '--weights', help=default('Whether to print weights'), default=False, action="store_true")
|
||||
parser.add_option('-k', '--smoothing', help=default("Smoothing parameter (ignored when using --autotune)"), type="float", default=2.0)
|
||||
parser.add_option('-a', '--autotune', help=default("Whether to automatically tune hyperparameters"), default=False, action="store_true")
|
||||
parser.add_option('-i', '--iterations', help=default("Maximum iterations to run training"), default=3, type="int")
|
||||
parser.add_option('-s', '--test', help=default("Amount of test data to use"), default=TEST_SET_SIZE, type="int")
|
||||
parser.add_option('-g', '--agentToClone', help=default("Pacman agent to copy"), default=None, type="str")
|
||||
|
||||
options, otherjunk = parser.parse_args(argv)
|
||||
if len(otherjunk) != 0: raise Exception('Command line input not understood: ' + str(otherjunk))
|
||||
args = {}
|
||||
|
||||
# Set up variables according to the command line input.
|
||||
print "Doing classification"
|
||||
print "--------------------"
|
||||
print "data:\t\t" + options.data
|
||||
print "classifier:\t\t" + options.classifier
|
||||
if not options.classifier == 'minicontest':
|
||||
print "using enhanced features?:\t" + str(options.features)
|
||||
else:
|
||||
print "using minicontest feature extractor"
|
||||
print "training set size:\t" + str(options.training)
|
||||
if(options.data=="digits"):
|
||||
printImage = ImagePrinter(DIGIT_DATUM_WIDTH, DIGIT_DATUM_HEIGHT).printImage
|
||||
if (options.features):
|
||||
featureFunction = enhancedFeatureExtractorDigit
|
||||
else:
|
||||
featureFunction = basicFeatureExtractorDigit
|
||||
if (options.classifier == 'minicontest'):
|
||||
featureFunction = contestFeatureExtractorDigit
|
||||
elif(options.data=="faces"):
|
||||
printImage = ImagePrinter(FACE_DATUM_WIDTH, FACE_DATUM_HEIGHT).printImage
|
||||
if (options.features):
|
||||
featureFunction = enhancedFeatureExtractorFace
|
||||
else:
|
||||
featureFunction = basicFeatureExtractorFace
|
||||
elif(options.data=="pacman"):
|
||||
printImage = None
|
||||
if (options.features):
|
||||
featureFunction = enhancedFeatureExtractorPacman
|
||||
else:
|
||||
featureFunction = basicFeatureExtractorPacman
|
||||
else:
|
||||
print "Unknown dataset", options.data
|
||||
print USAGE_STRING
|
||||
sys.exit(2)
|
||||
|
||||
if(options.data=="digits"):
|
||||
legalLabels = range(10)
|
||||
else:
|
||||
legalLabels = ['Stop', 'West', 'East', 'North', 'South']
|
||||
|
||||
if options.training <= 0:
|
||||
print "Training set size should be a positive integer (you provided: %d)" % options.training
|
||||
print USAGE_STRING
|
||||
sys.exit(2)
|
||||
|
||||
if options.smoothing <= 0:
|
||||
print "Please provide a positive number for smoothing (you provided: %f)" % options.smoothing
|
||||
print USAGE_STRING
|
||||
sys.exit(2)
|
||||
|
||||
if options.odds:
|
||||
if options.label1 not in legalLabels or options.label2 not in legalLabels:
|
||||
print "Didn't provide a legal labels for the odds ratio: (%d,%d)" % (options.label1, options.label2)
|
||||
print USAGE_STRING
|
||||
sys.exit(2)
|
||||
|
||||
if(options.classifier == "mostFrequent"):
|
||||
classifier = mostFrequent.MostFrequentClassifier(legalLabels)
|
||||
elif(options.classifier == "naiveBayes" or options.classifier == "nb"):
|
||||
classifier = naiveBayes.NaiveBayesClassifier(legalLabels)
|
||||
classifier.setSmoothing(options.smoothing)
|
||||
if (options.autotune):
|
||||
print "using automatic tuning for naivebayes"
|
||||
classifier.automaticTuning = True
|
||||
else:
|
||||
print "using smoothing parameter k=%f for naivebayes" % options.smoothing
|
||||
elif(options.classifier == "perceptron"):
|
||||
if options.data != 'pacman':
|
||||
classifier = perceptron.PerceptronClassifier(legalLabels,options.iterations)
|
||||
else:
|
||||
classifier = perceptron_pacman.PerceptronClassifierPacman(legalLabels,options.iterations)
|
||||
elif(options.classifier == "mira"):
|
||||
if options.data != 'pacman':
|
||||
classifier = mira.MiraClassifier(legalLabels, options.iterations)
|
||||
if (options.autotune):
|
||||
print "using automatic tuning for MIRA"
|
||||
classifier.automaticTuning = True
|
||||
else:
|
||||
print "using default C=0.001 for MIRA"
|
||||
elif(options.classifier == 'minicontest'):
|
||||
import minicontest
|
||||
classifier = minicontest.contestClassifier(legalLabels)
|
||||
else:
|
||||
print "Unknown classifier:", options.classifier
|
||||
print USAGE_STRING
|
||||
|
||||
sys.exit(2)
|
||||
|
||||
args['agentToClone'] = options.agentToClone
|
||||
|
||||
args['classifier'] = classifier
|
||||
args['featureFunction'] = featureFunction
|
||||
args['printImage'] = printImage
|
||||
|
||||
return args, options
|
||||
|
||||
# Dictionary containing full path to .pkl file that contains the agent's training, validation, and testing data.
|
||||
MAP_AGENT_TO_PATH_OF_SAVED_GAMES = {
|
||||
'FoodAgent': ('pacmandata/food_training.pkl','pacmandata/food_validation.pkl','pacmandata/food_test.pkl' ),
|
||||
'StopAgent': ('pacmandata/stop_training.pkl','pacmandata/stop_validation.pkl','pacmandata/stop_test.pkl' ),
|
||||
'SuicideAgent': ('pacmandata/suicide_training.pkl','pacmandata/suicide_validation.pkl','pacmandata/suicide_test.pkl' ),
|
||||
'GoodReflexAgent': ('pacmandata/good_reflex_training.pkl','pacmandata/good_reflex_validation.pkl','pacmandata/good_reflex_test.pkl' ),
|
||||
'ContestAgent': ('pacmandata/contest_training.pkl','pacmandata/contest_validation.pkl', 'pacmandata/contest_test.pkl' )
|
||||
}
|
||||
# Main harness code
|
||||
|
||||
|
||||
|
||||
def runClassifier(args, options):
|
||||
featureFunction = args['featureFunction']
|
||||
classifier = args['classifier']
|
||||
printImage = args['printImage']
|
||||
|
||||
# Load data
|
||||
numTraining = options.training
|
||||
numTest = options.test
|
||||
|
||||
if(options.data=="pacman"):
|
||||
agentToClone = args.get('agentToClone', None)
|
||||
trainingData, validationData, testData = MAP_AGENT_TO_PATH_OF_SAVED_GAMES.get(agentToClone, (None, None, None))
|
||||
trainingData = trainingData or args.get('trainingData', False) or MAP_AGENT_TO_PATH_OF_SAVED_GAMES['ContestAgent'][0]
|
||||
validationData = validationData or args.get('validationData', False) or MAP_AGENT_TO_PATH_OF_SAVED_GAMES['ContestAgent'][1]
|
||||
testData = testData or MAP_AGENT_TO_PATH_OF_SAVED_GAMES['ContestAgent'][2]
|
||||
rawTrainingData, trainingLabels = samples.loadPacmanData(trainingData, numTraining)
|
||||
rawValidationData, validationLabels = samples.loadPacmanData(validationData, numTest)
|
||||
rawTestData, testLabels = samples.loadPacmanData(testData, numTest)
|
||||
else:
|
||||
rawTrainingData = samples.loadDataFile("digitdata/trainingimages", numTraining,DIGIT_DATUM_WIDTH,DIGIT_DATUM_HEIGHT)
|
||||
trainingLabels = samples.loadLabelsFile("digitdata/traininglabels", numTraining)
|
||||
rawValidationData = samples.loadDataFile("digitdata/validationimages", numTest,DIGIT_DATUM_WIDTH,DIGIT_DATUM_HEIGHT)
|
||||
validationLabels = samples.loadLabelsFile("digitdata/validationlabels", numTest)
|
||||
rawTestData = samples.loadDataFile("digitdata/testimages", numTest,DIGIT_DATUM_WIDTH,DIGIT_DATUM_HEIGHT)
|
||||
testLabels = samples.loadLabelsFile("digitdata/testlabels", numTest)
|
||||
|
||||
|
||||
# Extract features
|
||||
print "Extracting features..."
|
||||
trainingData = map(featureFunction, rawTrainingData)
|
||||
validationData = map(featureFunction, rawValidationData)
|
||||
testData = map(featureFunction, rawTestData)
|
||||
|
||||
# Conduct training and testing
|
||||
print "Training..."
|
||||
classifier.train(trainingData, trainingLabels, validationData, validationLabels)
|
||||
print "Validating..."
|
||||
guesses = classifier.classify(validationData)
|
||||
correct = [guesses[i] == validationLabels[i] for i in range(len(validationLabels))].count(True)
|
||||
print str(correct), ("correct out of " + str(len(validationLabels)) + " (%.1f%%).") % (100.0 * correct / len(validationLabels))
|
||||
print "Testing..."
|
||||
guesses = classifier.classify(testData)
|
||||
correct = [guesses[i] == testLabels[i] for i in range(len(testLabels))].count(True)
|
||||
print str(correct), ("correct out of " + str(len(testLabels)) + " (%.1f%%).") % (100.0 * correct / len(testLabels))
|
||||
analysis(classifier, guesses, testLabels, testData, rawTestData, printImage)
|
||||
|
||||
# do odds ratio computation if specified at command line
|
||||
if((options.odds) & (options.classifier == "naiveBayes" or (options.classifier == "nb")) ):
|
||||
label1, label2 = options.label1, options.label2
|
||||
features_odds = classifier.findHighOddsFeatures(label1,label2)
|
||||
if(options.classifier == "naiveBayes" or options.classifier == "nb"):
|
||||
string3 = "=== Features with highest odd ratio of label %d over label %d ===" % (label1, label2)
|
||||
else:
|
||||
string3 = "=== Features for which weight(label %d)-weight(label %d) is biggest ===" % (label1, label2)
|
||||
|
||||
print string3
|
||||
printImage(features_odds)
|
||||
|
||||
if((options.weights) & (options.classifier == "perceptron")):
|
||||
for l in classifier.legalLabels:
|
||||
features_weights = classifier.findHighWeightFeatures(l)
|
||||
print ("=== Features with high weight for label %d ==="%l)
|
||||
printImage(features_weights)
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Read input
|
||||
args, options = readCommand( sys.argv[1:] )
|
||||
# Run classifier
|
||||
runClassifier(args, options)
|
729
p5_classification/game.py
Normal file
@ -0,0 +1,729 @@
|
||||
# game.py
|
||||
# -------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
# game.py
|
||||
# -------
|
||||
# Licensing Information: Please do not distribute or publish solutions to this
|
||||
# project. You are free to use and extend these projects for educational
|
||||
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
|
||||
# John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html
|
||||
|
||||
from util import *
|
||||
import time, os
|
||||
import traceback
|
||||
import sys
|
||||
|
||||
#######################
|
||||
# Parts worth reading #
|
||||
#######################
|
||||
|
||||
class Agent:
|
||||
"""
|
||||
An agent must define a getAction method, but may also define the
|
||||
following methods which will be called if they exist:
|
||||
|
||||
def registerInitialState(self, state): # inspects the starting state
|
||||
"""
|
||||
def __init__(self, index=0):
|
||||
self.index = index
|
||||
|
||||
def getAction(self, state):
|
||||
"""
|
||||
The Agent will receive a GameState (from either {pacman, capture, sonar}.py) and
|
||||
must return an action from Directions.{North, South, East, West, Stop}
|
||||
"""
|
||||
raiseNotDefined()
|
||||
|
||||
class Directions:
|
||||
NORTH = 'North'
|
||||
SOUTH = 'South'
|
||||
EAST = 'East'
|
||||
WEST = 'West'
|
||||
STOP = 'Stop'
|
||||
|
||||
LEFT = {NORTH: WEST,
|
||||
SOUTH: EAST,
|
||||
EAST: NORTH,
|
||||
WEST: SOUTH,
|
||||
STOP: STOP}
|
||||
|
||||
RIGHT = dict([(y,x) for x, y in LEFT.items()])
|
||||
|
||||
REVERSE = {NORTH: SOUTH,
|
||||
SOUTH: NORTH,
|
||||
EAST: WEST,
|
||||
WEST: EAST,
|
||||
STOP: STOP}
|
||||
|
||||
class Configuration:
|
||||
"""
|
||||
A Configuration holds the (x,y) coordinate of a character, along with its
|
||||
traveling direction.
|
||||
|
||||
The convention for positions, like a graph, is that (0,0) is the lower left corner, x increases
|
||||
horizontally and y increases vertically. Therefore, north is the direction of increasing y, or (0,1).
|
||||
"""
|
||||
|
||||
def __init__(self, pos, direction):
|
||||
self.pos = pos
|
||||
self.direction = direction
|
||||
|
||||
def getPosition(self):
|
||||
return (self.pos)
|
||||
|
||||
def getDirection(self):
|
||||
return self.direction
|
||||
|
||||
def isInteger(self):
|
||||
x,y = self.pos
|
||||
return x == int(x) and y == int(y)
|
||||
|
||||
def __eq__(self, other):
|
||||
if other == None: return False
|
||||
return (self.pos == other.pos and self.direction == other.direction)
|
||||
|
||||
def __hash__(self):
|
||||
x = hash(self.pos)
|
||||
y = hash(self.direction)
|
||||
return hash(x + 13 * y)
|
||||
|
||||
def __str__(self):
|
||||
return "(x,y)="+str(self.pos)+", "+str(self.direction)
|
||||
|
||||
def generateSuccessor(self, vector):
|
||||
"""
|
||||
Generates a new configuration reached by translating the current
|
||||
configuration by the action vector. This is a low-level call and does
|
||||
not attempt to respect the legality of the movement.
|
||||
|
||||
Actions are movement vectors.
|
||||
"""
|
||||
x, y= self.pos
|
||||
dx, dy = vector
|
||||
direction = Actions.vectorToDirection(vector)
|
||||
if direction == Directions.STOP:
|
||||
direction = self.direction # There is no stop direction
|
||||
return Configuration((x + dx, y+dy), direction)
|
||||
|
||||
class AgentState:
|
||||
"""
|
||||
AgentStates hold the state of an agent (configuration, speed, scared, etc).
|
||||
"""
|
||||
|
||||
def __init__( self, startConfiguration, isPacman ):
|
||||
self.start = startConfiguration
|
||||
self.configuration = startConfiguration
|
||||
self.isPacman = isPacman
|
||||
self.scaredTimer = 0
|
||||
self.numCarrying = 0
|
||||
self.numReturned = 0
|
||||
|
||||
def __str__( self ):
|
||||
if self.isPacman:
|
||||
return "Pacman: " + str( self.configuration )
|
||||
else:
|
||||
return "Ghost: " + str( self.configuration )
|
||||
|
||||
def __eq__( self, other ):
|
||||
if other == None:
|
||||
return False
|
||||
return self.configuration == other.configuration and self.scaredTimer == other.scaredTimer
|
||||
|
||||
def __hash__(self):
|
||||
return hash(hash(self.configuration) + 13 * hash(self.scaredTimer))
|
||||
|
||||
def copy( self ):
|
||||
state = AgentState( self.start, self.isPacman )
|
||||
state.configuration = self.configuration
|
||||
state.scaredTimer = self.scaredTimer
|
||||
state.numCarrying = self.numCarrying
|
||||
state.numReturned = self.numReturned
|
||||
return state
|
||||
|
||||
def getPosition(self):
|
||||
if self.configuration == None: return None
|
||||
return self.configuration.getPosition()
|
||||
|
||||
def getDirection(self):
|
||||
return self.configuration.getDirection()
|
||||
|
||||
class Grid:
|
||||
"""
|
||||
A 2-dimensional array of objects backed by a list of lists. Data is accessed
|
||||
via grid[x][y] where (x,y) are positions on a Pacman map with x horizontal,
|
||||
y vertical and the origin (0,0) in the bottom left corner.
|
||||
|
||||
The __str__ method constructs an output that is oriented like a pacman board.
|
||||
"""
|
||||
def __init__(self, width, height, initialValue=False, bitRepresentation=None):
|
||||
if initialValue not in [False, True]: raise Exception('Grids can only contain booleans')
|
||||
self.CELLS_PER_INT = 30
|
||||
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.data = [[initialValue for y in range(height)] for x in range(width)]
|
||||
if bitRepresentation:
|
||||
self._unpackBits(bitRepresentation)
|
||||
|
||||
def __getitem__(self, i):
|
||||
return self.data[i]
|
||||
|
||||
def __setitem__(self, key, item):
|
||||
self.data[key] = item
|
||||
|
||||
def __str__(self):
|
||||
out = [[str(self.data[x][y])[0] for x in range(self.width)] for y in range(self.height)]
|
||||
out.reverse()
|
||||
return '\n'.join([''.join(x) for x in out])
|
||||
|
||||
def __eq__(self, other):
|
||||
if other == None: return False
|
||||
return self.data == other.data
|
||||
|
||||
def __hash__(self):
|
||||
# return hash(str(self))
|
||||
base = 1
|
||||
h = 0
|
||||
for l in self.data:
|
||||
for i in l:
|
||||
if i:
|
||||
h += base
|
||||
base *= 2
|
||||
return hash(h)
|
||||
|
||||
def copy(self):
|
||||
g = Grid(self.width, self.height)
|
||||
g.data = [x[:] for x in self.data]
|
||||
return g
|
||||
|
||||
def deepCopy(self):
|
||||
return self.copy()
|
||||
|
||||
def shallowCopy(self):
|
||||
g = Grid(self.width, self.height)
|
||||
g.data = self.data
|
||||
return g
|
||||
|
||||
def count(self, item =True ):
|
||||
return sum([x.count(item) for x in self.data])
|
||||
|
||||
def asList(self, key = True):
|
||||
list = []
|
||||
for x in range(self.width):
|
||||
for y in range(self.height):
|
||||
if self[x][y] == key: list.append( (x,y) )
|
||||
return list
|
||||
|
||||
def packBits(self):
|
||||
"""
|
||||
Returns an efficient int list representation
|
||||
|
||||
(width, height, bitPackedInts...)
|
||||
"""
|
||||
bits = [self.width, self.height]
|
||||
currentInt = 0
|
||||
for i in range(self.height * self.width):
|
||||
bit = self.CELLS_PER_INT - (i % self.CELLS_PER_INT) - 1
|
||||
x, y = self._cellIndexToPosition(i)
|
||||
if self[x][y]:
|
||||
currentInt += 2 ** bit
|
||||
if (i + 1) % self.CELLS_PER_INT == 0:
|
||||
bits.append(currentInt)
|
||||
currentInt = 0
|
||||
bits.append(currentInt)
|
||||
return tuple(bits)
|
||||
|
||||
def _cellIndexToPosition(self, index):
|
||||
x = index / self.height
|
||||
y = index % self.height
|
||||
return x, y
|
||||
|
||||
def _unpackBits(self, bits):
|
||||
"""
|
||||
Fills in data from a bit-level representation
|
||||
"""
|
||||
cell = 0
|
||||
for packed in bits:
|
||||
for bit in self._unpackInt(packed, self.CELLS_PER_INT):
|
||||
if cell == self.width * self.height: break
|
||||
x, y = self._cellIndexToPosition(cell)
|
||||
self[x][y] = bit
|
||||
cell += 1
|
||||
|
||||
def _unpackInt(self, packed, size):
|
||||
bools = []
|
||||
if packed < 0: raise ValueError, "must be a positive integer"
|
||||
for i in range(size):
|
||||
n = 2 ** (self.CELLS_PER_INT - i - 1)
|
||||
if packed >= n:
|
||||
bools.append(True)
|
||||
packed -= n
|
||||
else:
|
||||
bools.append(False)
|
||||
return bools
|
||||
|
||||
def reconstituteGrid(bitRep):
|
||||
if type(bitRep) is not type((1,2)):
|
||||
return bitRep
|
||||
width, height = bitRep[:2]
|
||||
return Grid(width, height, bitRepresentation= bitRep[2:])
|
||||
|
||||
####################################
|
||||
# Parts you shouldn't have to read #
|
||||
####################################
|
||||
|
||||
class Actions:
|
||||
"""
|
||||
A collection of static methods for manipulating move actions.
|
||||
"""
|
||||
# Directions
|
||||
_directions = {Directions.NORTH: (0, 1),
|
||||
Directions.SOUTH: (0, -1),
|
||||
Directions.EAST: (1, 0),
|
||||
Directions.WEST: (-1, 0),
|
||||
Directions.STOP: (0, 0)}
|
||||
|
||||
_directionsAsList = _directions.items()
|
||||
|
||||
TOLERANCE = .001
|
||||
|
||||
def reverseDirection(action):
|
||||
if action == Directions.NORTH:
|
||||
return Directions.SOUTH
|
||||
if action == Directions.SOUTH:
|
||||
return Directions.NORTH
|
||||
if action == Directions.EAST:
|
||||
return Directions.WEST
|
||||
if action == Directions.WEST:
|
||||
return Directions.EAST
|
||||
return action
|
||||
reverseDirection = staticmethod(reverseDirection)
|
||||
|
||||
def vectorToDirection(vector):
|
||||
dx, dy = vector
|
||||
if dy > 0:
|
||||
return Directions.NORTH
|
||||
if dy < 0:
|
||||
return Directions.SOUTH
|
||||
if dx < 0:
|
||||
return Directions.WEST
|
||||
if dx > 0:
|
||||
return Directions.EAST
|
||||
return Directions.STOP
|
||||
vectorToDirection = staticmethod(vectorToDirection)
|
||||
|
||||
def directionToVector(direction, speed = 1.0):
|
||||
dx, dy = Actions._directions[direction]
|
||||
return (dx * speed, dy * speed)
|
||||
directionToVector = staticmethod(directionToVector)
|
||||
|
||||
def getPossibleActions(config, walls):
|
||||
possible = []
|
||||
x, y = config.pos
|
||||
x_int, y_int = int(x + 0.5), int(y + 0.5)
|
||||
|
||||
# In between grid points, all agents must continue straight
|
||||
if (abs(x - x_int) + abs(y - y_int) > Actions.TOLERANCE):
|
||||
return [config.getDirection()]
|
||||
|
||||
for dir, vec in Actions._directionsAsList:
|
||||
dx, dy = vec
|
||||
next_y = y_int + dy
|
||||
next_x = x_int + dx
|
||||
if not walls[next_x][next_y]: possible.append(dir)
|
||||
|
||||
return possible
|
||||
|
||||
getPossibleActions = staticmethod(getPossibleActions)
|
||||
|
||||
def getLegalNeighbors(position, walls):
|
||||
x,y = position
|
||||
x_int, y_int = int(x + 0.5), int(y + 0.5)
|
||||
neighbors = []
|
||||
for dir, vec in Actions._directionsAsList:
|
||||
dx, dy = vec
|
||||
next_x = x_int + dx
|
||||
if next_x < 0 or next_x == walls.width: continue
|
||||
next_y = y_int + dy
|
||||
if next_y < 0 or next_y == walls.height: continue
|
||||
if not walls[next_x][next_y]: neighbors.append((next_x, next_y))
|
||||
return neighbors
|
||||
getLegalNeighbors = staticmethod(getLegalNeighbors)
|
||||
|
||||
def getSuccessor(position, action):
|
||||
dx, dy = Actions.directionToVector(action)
|
||||
x, y = position
|
||||
return (x + dx, y + dy)
|
||||
getSuccessor = staticmethod(getSuccessor)
|
||||
|
||||
class GameStateData:
|
||||
"""
|
||||
|
||||
"""
|
||||
def __init__( self, prevState = None ):
|
||||
"""
|
||||
Generates a new data packet by copying information from its predecessor.
|
||||
"""
|
||||
if prevState != None:
|
||||
self.food = prevState.food.shallowCopy()
|
||||
self.capsules = prevState.capsules[:]
|
||||
self.agentStates = self.copyAgentStates( prevState.agentStates )
|
||||
self.layout = prevState.layout
|
||||
self._eaten = prevState._eaten
|
||||
self.score = prevState.score
|
||||
|
||||
self._foodEaten = None
|
||||
self._foodAdded = None
|
||||
self._capsuleEaten = None
|
||||
self._agentMoved = None
|
||||
self._lose = False
|
||||
self._win = False
|
||||
self.scoreChange = 0
|
||||
|
||||
def deepCopy( self ):
|
||||
state = GameStateData( self )
|
||||
state.food = self.food.deepCopy()
|
||||
state.layout = self.layout.deepCopy()
|
||||
state._agentMoved = self._agentMoved
|
||||
state._foodEaten = self._foodEaten
|
||||
state._foodAdded = self._foodAdded
|
||||
state._capsuleEaten = self._capsuleEaten
|
||||
return state
|
||||
|
||||
def copyAgentStates( self, agentStates ):
|
||||
copiedStates = []
|
||||
for agentState in agentStates:
|
||||
copiedStates.append( agentState.copy() )
|
||||
return copiedStates
|
||||
|
||||
def __eq__( self, other ):
|
||||
"""
|
||||
Allows two states to be compared.
|
||||
"""
|
||||
if other == None: return False
|
||||
# TODO Check for type of other
|
||||
if not self.agentStates == other.agentStates: return False
|
||||
if not self.food == other.food: return False
|
||||
if not self.capsules == other.capsules: return False
|
||||
if not self.score == other.score: return False
|
||||
return True
|
||||
|
||||
def __hash__( self ):
|
||||
"""
|
||||
Allows states to be keys of dictionaries.
|
||||
"""
|
||||
for i, state in enumerate( self.agentStates ):
|
||||
try:
|
||||
int(hash(state))
|
||||
except TypeError, e:
|
||||
print e
|
||||
#hash(state)
|
||||
return int((hash(tuple(self.agentStates)) + 13*hash(self.food) + 113* hash(tuple(self.capsules)) + 7 * hash(self.score)) % 1048575 )
|
||||
|
||||
def __str__( self ):
|
||||
width, height = self.layout.width, self.layout.height
|
||||
map = Grid(width, height)
|
||||
if type(self.food) == type((1,2)):
|
||||
self.food = reconstituteGrid(self.food)
|
||||
for x in range(width):
|
||||
for y in range(height):
|
||||
food, walls = self.food, self.layout.walls
|
||||
map[x][y] = self._foodWallStr(food[x][y], walls[x][y])
|
||||
|
||||
for agentState in self.agentStates:
|
||||
if agentState == None: continue
|
||||
if agentState.configuration == None: continue
|
||||
x,y = [int( i ) for i in nearestPoint( agentState.configuration.pos )]
|
||||
agent_dir = agentState.configuration.direction
|
||||
if agentState.isPacman:
|
||||
map[x][y] = self._pacStr( agent_dir )
|
||||
else:
|
||||
map[x][y] = self._ghostStr( agent_dir )
|
||||
|
||||
for x, y in self.capsules:
|
||||
map[x][y] = 'o'
|
||||
|
||||
return str(map) + ("\nScore: %d\n" % self.score)
|
||||
|
||||
def _foodWallStr( self, hasFood, hasWall ):
|
||||
if hasFood:
|
||||
return '.'
|
||||
elif hasWall:
|
||||
return '%'
|
||||
else:
|
||||
return ' '
|
||||
|
||||
def _pacStr( self, dir ):
|
||||
if dir == Directions.NORTH:
|
||||
return 'v'
|
||||
if dir == Directions.SOUTH:
|
||||
return '^'
|
||||
if dir == Directions.WEST:
|
||||
return '>'
|
||||
return '<'
|
||||
|
||||
def _ghostStr( self, dir ):
|
||||
return 'G'
|
||||
if dir == Directions.NORTH:
|
||||
return 'M'
|
||||
if dir == Directions.SOUTH:
|
||||
return 'W'
|
||||
if dir == Directions.WEST:
|
||||
return '3'
|
||||
return 'E'
|
||||
|
||||
def initialize( self, layout, numGhostAgents ):
|
||||
"""
|
||||
Creates an initial game state from a layout array (see layout.py).
|
||||
"""
|
||||
self.food = layout.food.copy()
|
||||
#self.capsules = []
|
||||
self.capsules = layout.capsules[:]
|
||||
self.layout = layout
|
||||
self.score = 0
|
||||
self.scoreChange = 0
|
||||
|
||||
self.agentStates = []
|
||||
numGhosts = 0
|
||||
for isPacman, pos in layout.agentPositions:
|
||||
if not isPacman:
|
||||
if numGhosts == numGhostAgents: continue # Max ghosts reached already
|
||||
else: numGhosts += 1
|
||||
self.agentStates.append( AgentState( Configuration( pos, Directions.STOP), isPacman) )
|
||||
self._eaten = [False for a in self.agentStates]
|
||||
|
||||
try:
|
||||
import boinc
|
||||
_BOINC_ENABLED = True
|
||||
except:
|
||||
_BOINC_ENABLED = False
|
||||
|
||||
class Game:
|
||||
"""
|
||||
The Game manages the control flow, soliciting actions from agents.
|
||||
"""
|
||||
|
||||
def __init__( self, agents, display, rules, startingIndex=0, muteAgents=False, catchExceptions=False ):
|
||||
self.agentCrashed = False
|
||||
self.agents = agents
|
||||
self.display = display
|
||||
self.rules = rules
|
||||
self.startingIndex = startingIndex
|
||||
self.gameOver = False
|
||||
self.muteAgents = muteAgents
|
||||
self.catchExceptions = catchExceptions
|
||||
self.moveHistory = []
|
||||
self.totalAgentTimes = [0 for agent in agents]
|
||||
self.totalAgentTimeWarnings = [0 for agent in agents]
|
||||
self.agentTimeout = False
|
||||
import cStringIO
|
||||
self.agentOutput = [cStringIO.StringIO() for agent in agents]
|
||||
|
||||
def getProgress(self):
|
||||
if self.gameOver:
|
||||
return 1.0
|
||||
else:
|
||||
return self.rules.getProgress(self)
|
||||
|
||||
def _agentCrash( self, agentIndex, quiet=False):
|
||||
"Helper method for handling agent crashes"
|
||||
if not quiet: traceback.print_exc()
|
||||
self.gameOver = True
|
||||
self.agentCrashed = True
|
||||
self.rules.agentCrash(self, agentIndex)
|
||||
|
||||
OLD_STDOUT = None
|
||||
OLD_STDERR = None
|
||||
|
||||
def mute(self, agentIndex):
|
||||
if not self.muteAgents: return
|
||||
global OLD_STDOUT, OLD_STDERR
|
||||
import cStringIO
|
||||
OLD_STDOUT = sys.stdout
|
||||
OLD_STDERR = sys.stderr
|
||||
sys.stdout = self.agentOutput[agentIndex]
|
||||
sys.stderr = self.agentOutput[agentIndex]
|
||||
|
||||
def unmute(self):
|
||||
if not self.muteAgents: return
|
||||
global OLD_STDOUT, OLD_STDERR
|
||||
# Revert stdout/stderr to originals
|
||||
sys.stdout = OLD_STDOUT
|
||||
sys.stderr = OLD_STDERR
|
||||
|
||||
|
||||
def run( self ):
|
||||
"""
|
||||
Main control loop for game play.
|
||||
"""
|
||||
self.display.initialize(self.state.data)
|
||||
self.numMoves = 0
|
||||
|
||||
###self.display.initialize(self.state.makeObservation(1).data)
|
||||
# inform learning agents of the game start
|
||||
for i in range(len(self.agents)):
|
||||
agent = self.agents[i]
|
||||
if not agent:
|
||||
self.mute(i)
|
||||
# this is a null agent, meaning it failed to load
|
||||
# the other team wins
|
||||
print >>sys.stderr, "Agent %d failed to load" % i
|
||||
self.unmute()
|
||||
self._agentCrash(i, quiet=True)
|
||||
return
|
||||
if ("registerInitialState" in dir(agent)):
|
||||
self.mute(i)
|
||||
if self.catchExceptions:
|
||||
try:
|
||||
timed_func = TimeoutFunction(agent.registerInitialState, int(self.rules.getMaxStartupTime(i)))
|
||||
try:
|
||||
start_time = time.time()
|
||||
timed_func(self.state.deepCopy())
|
||||
time_taken = time.time() - start_time
|
||||
self.totalAgentTimes[i] += time_taken
|
||||
except TimeoutFunctionException:
|
||||
print >>sys.stderr, "Agent %d ran out of time on startup!" % i
|
||||
self.unmute()
|
||||
self.agentTimeout = True
|
||||
self._agentCrash(i, quiet=True)
|
||||
return
|
||||
except Exception,data:
|
||||
self._agentCrash(i, quiet=False)
|
||||
self.unmute()
|
||||
return
|
||||
else:
|
||||
agent.registerInitialState(self.state.deepCopy())
|
||||
## TODO: could this exceed the total time
|
||||
self.unmute()
|
||||
|
||||
agentIndex = self.startingIndex
|
||||
numAgents = len( self.agents )
|
||||
|
||||
while not self.gameOver:
|
||||
# Fetch the next agent
|
||||
agent = self.agents[agentIndex]
|
||||
move_time = 0
|
||||
skip_action = False
|
||||
# Generate an observation of the state
|
||||
if 'observationFunction' in dir( agent ):
|
||||
self.mute(agentIndex)
|
||||
if self.catchExceptions:
|
||||
try:
|
||||
timed_func = TimeoutFunction(agent.observationFunction, int(self.rules.getMoveTimeout(agentIndex)))
|
||||
try:
|
||||
start_time = time.time()
|
||||
observation = timed_func(self.state.deepCopy())
|
||||
except TimeoutFunctionException:
|
||||
skip_action = True
|
||||
move_time += time.time() - start_time
|
||||
self.unmute()
|
||||
except Exception,data:
|
||||
self._agentCrash(agentIndex, quiet=False)
|
||||
self.unmute()
|
||||
return
|
||||
else:
|
||||
observation = agent.observationFunction(self.state.deepCopy())
|
||||
self.unmute()
|
||||
else:
|
||||
observation = self.state.deepCopy()
|
||||
|
||||
# Solicit an action
|
||||
action = None
|
||||
self.mute(agentIndex)
|
||||
if self.catchExceptions:
|
||||
try:
|
||||
timed_func = TimeoutFunction(agent.getAction, int(self.rules.getMoveTimeout(agentIndex)) - int(move_time))
|
||||
try:
|
||||
start_time = time.time()
|
||||
if skip_action:
|
||||
raise TimeoutFunctionException()
|
||||
action = timed_func( observation )
|
||||
except TimeoutFunctionException:
|
||||
print >>sys.stderr, "Agent %d timed out on a single move!" % agentIndex
|
||||
self.agentTimeout = True
|
||||
self._agentCrash(agentIndex, quiet=True)
|
||||
self.unmute()
|
||||
return
|
||||
|
||||
move_time += time.time() - start_time
|
||||
|
||||
if move_time > self.rules.getMoveWarningTime(agentIndex):
|
||||
self.totalAgentTimeWarnings[agentIndex] += 1
|
||||
print >>sys.stderr, "Agent %d took too long to make a move! This is warning %d" % (agentIndex, self.totalAgentTimeWarnings[agentIndex])
|
||||
if self.totalAgentTimeWarnings[agentIndex] > self.rules.getMaxTimeWarnings(agentIndex):
|
||||
print >>sys.stderr, "Agent %d exceeded the maximum number of warnings: %d" % (agentIndex, self.totalAgentTimeWarnings[agentIndex])
|
||||
self.agentTimeout = True
|
||||
self._agentCrash(agentIndex, quiet=True)
|
||||
self.unmute()
|
||||
return
|
||||
|
||||
self.totalAgentTimes[agentIndex] += move_time
|
||||
#print "Agent: %d, time: %f, total: %f" % (agentIndex, move_time, self.totalAgentTimes[agentIndex])
|
||||
if self.totalAgentTimes[agentIndex] > self.rules.getMaxTotalTime(agentIndex):
|
||||
print >>sys.stderr, "Agent %d ran out of time! (time: %1.2f)" % (agentIndex, self.totalAgentTimes[agentIndex])
|
||||
self.agentTimeout = True
|
||||
self._agentCrash(agentIndex, quiet=True)
|
||||
self.unmute()
|
||||
return
|
||||
self.unmute()
|
||||
except Exception,data:
|
||||
self._agentCrash(agentIndex)
|
||||
self.unmute()
|
||||
return
|
||||
else:
|
||||
action = agent.getAction(observation)
|
||||
self.unmute()
|
||||
|
||||
# Execute the action
|
||||
self.moveHistory.append( (agentIndex, action) )
|
||||
if self.catchExceptions:
|
||||
try:
|
||||
self.state = self.state.generateSuccessor( agentIndex, action )
|
||||
except Exception,data:
|
||||
self.mute(agentIndex)
|
||||
self._agentCrash(agentIndex)
|
||||
self.unmute()
|
||||
return
|
||||
else:
|
||||
self.state = self.state.generateSuccessor( agentIndex, action )
|
||||
|
||||
# Change the display
|
||||
self.display.update( self.state.data )
|
||||
###idx = agentIndex - agentIndex % 2 + 1
|
||||
###self.display.update( self.state.makeObservation(idx).data )
|
||||
|
||||
# Allow for game specific conditions (winning, losing, etc.)
|
||||
self.rules.process(self.state, self)
|
||||
# Track progress
|
||||
if agentIndex == numAgents + 1: self.numMoves += 1
|
||||
# Next agent
|
||||
agentIndex = ( agentIndex + 1 ) % numAgents
|
||||
|
||||
if _BOINC_ENABLED:
|
||||
boinc.set_fraction_done(self.getProgress())
|
||||
|
||||
# inform a learning agent of the game result
|
||||
for agentIndex, agent in enumerate(self.agents):
|
||||
if "final" in dir( agent ) :
|
||||
try:
|
||||
self.mute(agentIndex)
|
||||
agent.final( self.state )
|
||||
self.unmute()
|
||||
except Exception,data:
|
||||
if not self.catchExceptions: raise
|
||||
self._agentCrash(agentIndex)
|
||||
self.unmute()
|
||||
return
|
||||
self.display.finish()
|
81
p5_classification/ghostAgents.py
Normal file
@ -0,0 +1,81 @@
|
||||
# ghostAgents.py
|
||||
# --------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from game import Agent
|
||||
from game import Actions
|
||||
from game import Directions
|
||||
import random
|
||||
from util import manhattanDistance
|
||||
import util
|
||||
|
||||
class GhostAgent( Agent ):
|
||||
def __init__( self, index ):
|
||||
self.index = index
|
||||
|
||||
def getAction( self, state ):
|
||||
dist = self.getDistribution(state)
|
||||
if len(dist) == 0:
|
||||
return Directions.STOP
|
||||
else:
|
||||
return util.chooseFromDistribution( dist )
|
||||
|
||||
def getDistribution(self, state):
|
||||
"Returns a Counter encoding a distribution over actions from the provided state."
|
||||
util.raiseNotDefined()
|
||||
|
||||
class RandomGhost( GhostAgent ):
|
||||
"A ghost that chooses a legal action uniformly at random."
|
||||
def getDistribution( self, state ):
|
||||
dist = util.Counter()
|
||||
for a in state.getLegalActions( self.index ): dist[a] = 1.0
|
||||
dist.normalize()
|
||||
return dist
|
||||
|
||||
class DirectionalGhost( GhostAgent ):
|
||||
"A ghost that prefers to rush Pacman, or flee when scared."
|
||||
def __init__( self, index, prob_attack=0.8, prob_scaredFlee=0.8 ):
|
||||
self.index = index
|
||||
self.prob_attack = prob_attack
|
||||
self.prob_scaredFlee = prob_scaredFlee
|
||||
|
||||
def getDistribution( self, state ):
|
||||
# Read variables from state
|
||||
ghostState = state.getGhostState( self.index )
|
||||
legalActions = state.getLegalActions( self.index )
|
||||
pos = state.getGhostPosition( self.index )
|
||||
isScared = ghostState.scaredTimer > 0
|
||||
|
||||
speed = 1
|
||||
if isScared: speed = 0.5
|
||||
|
||||
actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions]
|
||||
newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors]
|
||||
pacmanPosition = state.getPacmanPosition()
|
||||
|
||||
# Select best actions given the state
|
||||
distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions]
|
||||
if isScared:
|
||||
bestScore = max( distancesToPacman )
|
||||
bestProb = self.prob_scaredFlee
|
||||
else:
|
||||
bestScore = min( distancesToPacman )
|
||||
bestProb = self.prob_attack
|
||||
bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore]
|
||||
|
||||
# Construct distribution
|
||||
dist = util.Counter()
|
||||
for a in bestActions: dist[a] = bestProb / len(bestActions)
|
||||
for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions)
|
||||
dist.normalize()
|
||||
return dist
|
282
p5_classification/grading.py
Normal file
@ -0,0 +1,282 @@
|
||||
# grading.py
|
||||
# ----------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
"Common code for autograders"
|
||||
|
||||
import cgi
|
||||
import time
|
||||
import sys
|
||||
import traceback
|
||||
import pdb
|
||||
from collections import defaultdict
|
||||
import util
|
||||
|
||||
class Grades:
|
||||
"A data structure for project grades, along with formatting code to display them"
|
||||
def __init__(self, projectName, questionsAndMaxesList, edxOutput=False, muteOutput=False):
|
||||
"""
|
||||
Defines the grading scheme for a project
|
||||
projectName: project name
|
||||
questionsAndMaxesDict: a list of (question name, max points per question)
|
||||
"""
|
||||
self.questions = [el[0] for el in questionsAndMaxesList]
|
||||
self.maxes = dict(questionsAndMaxesList)
|
||||
self.points = Counter()
|
||||
self.messages = dict([(q, []) for q in self.questions])
|
||||
self.project = projectName
|
||||
self.start = time.localtime()[1:6]
|
||||
self.sane = True # Sanity checks
|
||||
self.currentQuestion = None # Which question we're grading
|
||||
self.edxOutput = edxOutput
|
||||
self.mute = muteOutput
|
||||
self.prereqs = defaultdict(set)
|
||||
|
||||
#print 'Autograder transcript for %s' % self.project
|
||||
print 'Starting on %d-%d at %d:%02d:%02d' % self.start
|
||||
|
||||
def addPrereq(self, question, prereq):
|
||||
self.prereqs[question].add(prereq)
|
||||
|
||||
def grade(self, gradingModule, exceptionMap = {}, bonusPic = False):
|
||||
"""
|
||||
Grades each question
|
||||
gradingModule: the module with all the grading functions (pass in with sys.modules[__name__])
|
||||
"""
|
||||
|
||||
completedQuestions = set([])
|
||||
for q in self.questions:
|
||||
print '\nQuestion %s' % q
|
||||
print '=' * (9 + len(q))
|
||||
print
|
||||
self.currentQuestion = q
|
||||
|
||||
incompleted = self.prereqs[q].difference(completedQuestions)
|
||||
if len(incompleted) > 0:
|
||||
prereq = incompleted.pop()
|
||||
print \
|
||||
"""*** NOTE: Make sure to complete Question %s before working on Question %s,
|
||||
*** because Question %s builds upon your answer for Question %s.
|
||||
""" % (prereq, q, q, prereq)
|
||||
continue
|
||||
|
||||
if self.mute: util.mutePrint()
|
||||
try:
|
||||
util.TimeoutFunction(getattr(gradingModule, q),300)(self) # Call the question's function
|
||||
#TimeoutFunction(getattr(gradingModule, q),1200)(self) # Call the question's function
|
||||
except Exception, inst:
|
||||
self.addExceptionMessage(q, inst, traceback)
|
||||
self.addErrorHints(exceptionMap, inst, q[1])
|
||||
except:
|
||||
self.fail('FAIL: Terminated with a string exception.')
|
||||
finally:
|
||||
if self.mute: util.unmutePrint()
|
||||
|
||||
if self.points[q] >= self.maxes[q]:
|
||||
completedQuestions.add(q)
|
||||
|
||||
print '\n### Question %s: %d/%d ###\n' % (q, self.points[q], self.maxes[q])
|
||||
|
||||
|
||||
print '\nFinished at %d:%02d:%02d' % time.localtime()[3:6]
|
||||
print "\nProvisional grades\n=================="
|
||||
|
||||
for q in self.questions:
|
||||
print 'Question %s: %d/%d' % (q, self.points[q], self.maxes[q])
|
||||
print '------------------'
|
||||
print 'Total: %d/%d' % (self.points.totalCount(), sum(self.maxes.values()))
|
||||
if bonusPic and self.points.totalCount() == 25:
|
||||
print """
|
||||
|
||||
ALL HAIL GRANDPAC.
|
||||
LONG LIVE THE GHOSTBUSTING KING.
|
||||
|
||||
--- ---- ---
|
||||
| \ / + \ / |
|
||||
| + \--/ \--/ + |
|
||||
| + + |
|
||||
| + + + |
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
\ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
\ / @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
V \ @@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
\ / @@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
V @@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@
|
||||
/\ @@@@@@@@@@@@@@@@@@@@@@
|
||||
/ \ @@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
/\ / @@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
/ \ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
/ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@
|
||||
|
||||
"""
|
||||
print """
|
||||
Your grades are NOT yet registered. To register your grades, make sure
|
||||
to follow your instructor's guidelines to receive credit on your project.
|
||||
"""
|
||||
|
||||
if self.edxOutput:
|
||||
self.produceOutput()
|
||||
|
||||
def addExceptionMessage(self, q, inst, traceback):
|
||||
"""
|
||||
Method to format the exception message, this is more complicated because
|
||||
we need to cgi.escape the traceback but wrap the exception in a <pre> tag
|
||||
"""
|
||||
self.fail('FAIL: Exception raised: %s' % inst)
|
||||
self.addMessage('')
|
||||
for line in traceback.format_exc().split('\n'):
|
||||
self.addMessage(line)
|
||||
|
||||
def addErrorHints(self, exceptionMap, errorInstance, questionNum):
|
||||
typeOf = str(type(errorInstance))
|
||||
questionName = 'q' + questionNum
|
||||
errorHint = ''
|
||||
|
||||
# question specific error hints
|
||||
if exceptionMap.get(questionName):
|
||||
questionMap = exceptionMap.get(questionName)
|
||||
if (questionMap.get(typeOf)):
|
||||
errorHint = questionMap.get(typeOf)
|
||||
# fall back to general error messages if a question specific
|
||||
# one does not exist
|
||||
if (exceptionMap.get(typeOf)):
|
||||
errorHint = exceptionMap.get(typeOf)
|
||||
|
||||
# dont include the HTML if we have no error hint
|
||||
if not errorHint:
|
||||
return ''
|
||||
|
||||
for line in errorHint.split('\n'):
|
||||
self.addMessage(line)
|
||||
|
||||
def produceOutput(self):
|
||||
edxOutput = open('edx_response.html', 'w')
|
||||
edxOutput.write("<div>")
|
||||
|
||||
# first sum
|
||||
total_possible = sum(self.maxes.values())
|
||||
total_score = sum(self.points.values())
|
||||
checkOrX = '<span class="incorrect"/>'
|
||||
if (total_score >= total_possible):
|
||||
checkOrX = '<span class="correct"/>'
|
||||
header = """
|
||||
<h3>
|
||||
Total score ({total_score} / {total_possible})
|
||||
</h3>
|
||||
""".format(total_score = total_score,
|
||||
total_possible = total_possible,
|
||||
checkOrX = checkOrX
|
||||
)
|
||||
edxOutput.write(header)
|
||||
|
||||
for q in self.questions:
|
||||
if len(q) == 2:
|
||||
name = q[1]
|
||||
else:
|
||||
name = q
|
||||
checkOrX = '<span class="incorrect"/>'
|
||||
if (self.points[q] == self.maxes[q]):
|
||||
checkOrX = '<span class="correct"/>'
|
||||
#messages = '\n<br/>\n'.join(self.messages[q])
|
||||
messages = "<pre>%s</pre>" % '\n'.join(self.messages[q])
|
||||
output = """
|
||||
<div class="test">
|
||||
<section>
|
||||
<div class="shortform">
|
||||
Question {q} ({points}/{max}) {checkOrX}
|
||||
</div>
|
||||
<div class="longform">
|
||||
{messages}
|
||||
</div>
|
||||
</section>
|
||||
</div>
|
||||
""".format(q = name,
|
||||
max = self.maxes[q],
|
||||
messages = messages,
|
||||
checkOrX = checkOrX,
|
||||
points = self.points[q]
|
||||
)
|
||||
# print "*** output for Question %s " % q[1]
|
||||
# print output
|
||||
edxOutput.write(output)
|
||||
edxOutput.write("</div>")
|
||||
edxOutput.close()
|
||||
edxOutput = open('edx_grade', 'w')
|
||||
edxOutput.write(str(self.points.totalCount()))
|
||||
edxOutput.close()
|
||||
|
||||
def fail(self, message, raw=False):
|
||||
"Sets sanity check bit to false and outputs a message"
|
||||
self.sane = False
|
||||
self.assignZeroCredit()
|
||||
self.addMessage(message, raw)
|
||||
|
||||
def assignZeroCredit(self):
|
||||
self.points[self.currentQuestion] = 0
|
||||
|
||||
def addPoints(self, amt):
|
||||
self.points[self.currentQuestion] += amt
|
||||
|
||||
def deductPoints(self, amt):
|
||||
self.points[self.currentQuestion] -= amt
|
||||
|
||||
def assignFullCredit(self, message="", raw=False):
|
||||
self.points[self.currentQuestion] = self.maxes[self.currentQuestion]
|
||||
if message != "":
|
||||
self.addMessage(message, raw)
|
||||
|
||||
def addMessage(self, message, raw=False):
|
||||
if not raw:
|
||||
# We assume raw messages, formatted for HTML, are printed separately
|
||||
if self.mute: util.unmutePrint()
|
||||
print '*** ' + message
|
||||
if self.mute: util.mutePrint()
|
||||
message = cgi.escape(message)
|
||||
self.messages[self.currentQuestion].append(message)
|
||||
|
||||
def addMessageToEmail(self, message):
|
||||
print "WARNING**** addMessageToEmail is deprecated %s" % message
|
||||
for line in message.split('\n'):
|
||||
pass
|
||||
#print '%%% ' + line + ' %%%'
|
||||
#self.messages[self.currentQuestion].append(line)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class Counter(dict):
|
||||
"""
|
||||
Dict with default 0
|
||||
"""
|
||||
def __getitem__(self, idx):
|
||||
try:
|
||||
return dict.__getitem__(self, idx)
|
||||
except KeyError:
|
||||
return 0
|
||||
|
||||
def totalCount(self):
|
||||
"""
|
||||
Returns the sum of counts for all keys.
|
||||
"""
|
||||
return sum(self.values())
|
||||
|
679
p5_classification/graphicsDisplay.py
Normal file
@ -0,0 +1,679 @@
|
||||
# graphicsDisplay.py
|
||||
# ------------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from graphicsUtils import *
|
||||
import math, time
|
||||
from game import Directions
|
||||
|
||||
###########################
|
||||
# GRAPHICS DISPLAY CODE #
|
||||
###########################
|
||||
|
||||
# Most code by Dan Klein and John Denero written or rewritten for cs188, UC Berkeley.
|
||||
# Some code from a Pacman implementation by LiveWires, and used / modified with permission.
|
||||
|
||||
DEFAULT_GRID_SIZE = 30.0
|
||||
INFO_PANE_HEIGHT = 35
|
||||
BACKGROUND_COLOR = formatColor(0,0,0)
|
||||
WALL_COLOR = formatColor(0.0/255.0, 51.0/255.0, 255.0/255.0)
|
||||
INFO_PANE_COLOR = formatColor(.4,.4,0)
|
||||
SCORE_COLOR = formatColor(.9, .9, .9)
|
||||
PACMAN_OUTLINE_WIDTH = 2
|
||||
PACMAN_CAPTURE_OUTLINE_WIDTH = 4
|
||||
|
||||
GHOST_COLORS = []
|
||||
GHOST_COLORS.append(formatColor(.9,0,0)) # Red
|
||||
GHOST_COLORS.append(formatColor(0,.3,.9)) # Blue
|
||||
GHOST_COLORS.append(formatColor(.98,.41,.07)) # Orange
|
||||
GHOST_COLORS.append(formatColor(.1,.75,.7)) # Green
|
||||
GHOST_COLORS.append(formatColor(1.0,0.6,0.0)) # Yellow
|
||||
GHOST_COLORS.append(formatColor(.4,0.13,0.91)) # Purple
|
||||
|
||||
TEAM_COLORS = GHOST_COLORS[:2]
|
||||
|
||||
GHOST_SHAPE = [
|
||||
( 0, 0.3 ),
|
||||
( 0.25, 0.75 ),
|
||||
( 0.5, 0.3 ),
|
||||
( 0.75, 0.75 ),
|
||||
( 0.75, -0.5 ),
|
||||
( 0.5, -0.75 ),
|
||||
(-0.5, -0.75 ),
|
||||
(-0.75, -0.5 ),
|
||||
(-0.75, 0.75 ),
|
||||
(-0.5, 0.3 ),
|
||||
(-0.25, 0.75 )
|
||||
]
|
||||
GHOST_SIZE = 0.65
|
||||
SCARED_COLOR = formatColor(1,1,1)
|
||||
|
||||
GHOST_VEC_COLORS = map(colorToVector, GHOST_COLORS)
|
||||
|
||||
PACMAN_COLOR = formatColor(255.0/255.0,255.0/255.0,61.0/255)
|
||||
PACMAN_SCALE = 0.5
|
||||
#pacman_speed = 0.25
|
||||
|
||||
# Food
|
||||
FOOD_COLOR = formatColor(1,1,1)
|
||||
FOOD_SIZE = 0.1
|
||||
|
||||
# Laser
|
||||
LASER_COLOR = formatColor(1,0,0)
|
||||
LASER_SIZE = 0.02
|
||||
|
||||
# Capsule graphics
|
||||
CAPSULE_COLOR = formatColor(1,1,1)
|
||||
CAPSULE_SIZE = 0.25
|
||||
|
||||
# Drawing walls
|
||||
WALL_RADIUS = 0.15
|
||||
|
||||
class InfoPane:
|
||||
def __init__(self, layout, gridSize):
|
||||
self.gridSize = gridSize
|
||||
self.width = (layout.width) * gridSize
|
||||
self.base = (layout.height + 1) * gridSize
|
||||
self.height = INFO_PANE_HEIGHT
|
||||
self.fontSize = 24
|
||||
self.textColor = PACMAN_COLOR
|
||||
self.drawPane()
|
||||
|
||||
def toScreen(self, pos, y = None):
|
||||
"""
|
||||
Translates a point relative from the bottom left of the info pane.
|
||||
"""
|
||||
if y == None:
|
||||
x,y = pos
|
||||
else:
|
||||
x = pos
|
||||
|
||||
x = self.gridSize + x # Margin
|
||||
y = self.base + y
|
||||
return x,y
|
||||
|
||||
def drawPane(self):
|
||||
self.scoreText = text( self.toScreen(0, 0 ), self.textColor, "SCORE: 0", "Times", self.fontSize, "bold")
|
||||
|
||||
def initializeGhostDistances(self, distances):
|
||||
self.ghostDistanceText = []
|
||||
|
||||
size = 20
|
||||
if self.width < 240:
|
||||
size = 12
|
||||
if self.width < 160:
|
||||
size = 10
|
||||
|
||||
for i, d in enumerate(distances):
|
||||
t = text( self.toScreen(self.width/2 + self.width/8 * i, 0), GHOST_COLORS[i+1], d, "Times", size, "bold")
|
||||
self.ghostDistanceText.append(t)
|
||||
|
||||
def updateScore(self, score):
|
||||
changeText(self.scoreText, "SCORE: % 4d" % score)
|
||||
|
||||
def setTeam(self, isBlue):
|
||||
text = "RED TEAM"
|
||||
if isBlue: text = "BLUE TEAM"
|
||||
self.teamText = text( self.toScreen(300, 0 ), self.textColor, text, "Times", self.fontSize, "bold")
|
||||
|
||||
def updateGhostDistances(self, distances):
|
||||
if len(distances) == 0: return
|
||||
if 'ghostDistanceText' not in dir(self): self.initializeGhostDistances(distances)
|
||||
else:
|
||||
for i, d in enumerate(distances):
|
||||
changeText(self.ghostDistanceText[i], d)
|
||||
|
||||
def drawGhost(self):
|
||||
pass
|
||||
|
||||
def drawPacman(self):
|
||||
pass
|
||||
|
||||
def drawWarning(self):
|
||||
pass
|
||||
|
||||
def clearIcon(self):
|
||||
pass
|
||||
|
||||
def updateMessage(self, message):
|
||||
pass
|
||||
|
||||
def clearMessage(self):
|
||||
pass
|
||||
|
||||
|
||||
class PacmanGraphics:
|
||||
def __init__(self, zoom=1.0, frameTime=0.0, capture=False):
|
||||
self.have_window = 0
|
||||
self.currentGhostImages = {}
|
||||
self.pacmanImage = None
|
||||
self.zoom = zoom
|
||||
self.gridSize = DEFAULT_GRID_SIZE * zoom
|
||||
self.capture = capture
|
||||
self.frameTime = frameTime
|
||||
|
||||
def checkNullDisplay(self):
|
||||
return False
|
||||
|
||||
def initialize(self, state, isBlue = False):
|
||||
self.isBlue = isBlue
|
||||
self.startGraphics(state)
|
||||
|
||||
# self.drawDistributions(state)
|
||||
self.distributionImages = None # Initialized lazily
|
||||
self.drawStaticObjects(state)
|
||||
self.drawAgentObjects(state)
|
||||
|
||||
# Information
|
||||
self.previousState = state
|
||||
|
||||
def startGraphics(self, state):
|
||||
self.layout = state.layout
|
||||
layout = self.layout
|
||||
self.width = layout.width
|
||||
self.height = layout.height
|
||||
self.make_window(self.width, self.height)
|
||||
self.infoPane = InfoPane(layout, self.gridSize)
|
||||
self.currentState = layout
|
||||
|
||||
def drawDistributions(self, state):
|
||||
walls = state.layout.walls
|
||||
dist = []
|
||||
for x in range(walls.width):
|
||||
distx = []
|
||||
dist.append(distx)
|
||||
for y in range(walls.height):
|
||||
( screen_x, screen_y ) = self.to_screen( (x, y) )
|
||||
block = square( (screen_x, screen_y),
|
||||
0.5 * self.gridSize,
|
||||
color = BACKGROUND_COLOR,
|
||||
filled = 1, behind=2)
|
||||
distx.append(block)
|
||||
self.distributionImages = dist
|
||||
|
||||
def drawStaticObjects(self, state):
|
||||
layout = self.layout
|
||||
self.drawWalls(layout.walls)
|
||||
self.food = self.drawFood(layout.food)
|
||||
self.capsules = self.drawCapsules(layout.capsules)
|
||||
refresh()
|
||||
|
||||
def drawAgentObjects(self, state):
|
||||
self.agentImages = [] # (agentState, image)
|
||||
for index, agent in enumerate(state.agentStates):
|
||||
if agent.isPacman:
|
||||
image = self.drawPacman(agent, index)
|
||||
self.agentImages.append( (agent, image) )
|
||||
else:
|
||||
image = self.drawGhost(agent, index)
|
||||
self.agentImages.append( (agent, image) )
|
||||
refresh()
|
||||
|
||||
def swapImages(self, agentIndex, newState):
|
||||
"""
|
||||
Changes an image from a ghost to a pacman or vis versa (for capture)
|
||||
"""
|
||||
prevState, prevImage = self.agentImages[agentIndex]
|
||||
for item in prevImage: remove_from_screen(item)
|
||||
if newState.isPacman:
|
||||
image = self.drawPacman(newState, agentIndex)
|
||||
self.agentImages[agentIndex] = (newState, image )
|
||||
else:
|
||||
image = self.drawGhost(newState, agentIndex)
|
||||
self.agentImages[agentIndex] = (newState, image )
|
||||
refresh()
|
||||
|
||||
def update(self, newState):
|
||||
agentIndex = newState._agentMoved
|
||||
agentState = newState.agentStates[agentIndex]
|
||||
|
||||
if self.agentImages[agentIndex][0].isPacman != agentState.isPacman: self.swapImages(agentIndex, agentState)
|
||||
prevState, prevImage = self.agentImages[agentIndex]
|
||||
if agentState.isPacman:
|
||||
self.animatePacman(agentState, prevState, prevImage)
|
||||
else:
|
||||
self.moveGhost(agentState, agentIndex, prevState, prevImage)
|
||||
self.agentImages[agentIndex] = (agentState, prevImage)
|
||||
|
||||
if newState._foodEaten != None:
|
||||
self.removeFood(newState._foodEaten, self.food)
|
||||
if newState._capsuleEaten != None:
|
||||
self.removeCapsule(newState._capsuleEaten, self.capsules)
|
||||
self.infoPane.updateScore(newState.score)
|
||||
if 'ghostDistances' in dir(newState):
|
||||
self.infoPane.updateGhostDistances(newState.ghostDistances)
|
||||
|
||||
def make_window(self, width, height):
|
||||
grid_width = (width-1) * self.gridSize
|
||||
grid_height = (height-1) * self.gridSize
|
||||
screen_width = 2*self.gridSize + grid_width
|
||||
screen_height = 2*self.gridSize + grid_height + INFO_PANE_HEIGHT
|
||||
|
||||
begin_graphics(screen_width,
|
||||
screen_height,
|
||||
BACKGROUND_COLOR,
|
||||
"CS188 Pacman")
|
||||
|
||||
def drawPacman(self, pacman, index):
|
||||
position = self.getPosition(pacman)
|
||||
screen_point = self.to_screen(position)
|
||||
endpoints = self.getEndpoints(self.getDirection(pacman))
|
||||
|
||||
width = PACMAN_OUTLINE_WIDTH
|
||||
outlineColor = PACMAN_COLOR
|
||||
fillColor = PACMAN_COLOR
|
||||
|
||||
if self.capture:
|
||||
outlineColor = TEAM_COLORS[index % 2]
|
||||
fillColor = GHOST_COLORS[index]
|
||||
width = PACMAN_CAPTURE_OUTLINE_WIDTH
|
||||
|
||||
return [circle(screen_point, PACMAN_SCALE * self.gridSize,
|
||||
fillColor = fillColor, outlineColor = outlineColor,
|
||||
endpoints = endpoints,
|
||||
width = width)]
|
||||
|
||||
def getEndpoints(self, direction, position=(0,0)):
|
||||
x, y = position
|
||||
pos = x - int(x) + y - int(y)
|
||||
width = 30 + 80 * math.sin(math.pi* pos)
|
||||
|
||||
delta = width / 2
|
||||
if (direction == 'West'):
|
||||
endpoints = (180+delta, 180-delta)
|
||||
elif (direction == 'North'):
|
||||
endpoints = (90+delta, 90-delta)
|
||||
elif (direction == 'South'):
|
||||
endpoints = (270+delta, 270-delta)
|
||||
else:
|
||||
endpoints = (0+delta, 0-delta)
|
||||
return endpoints
|
||||
|
||||
def movePacman(self, position, direction, image):
|
||||
screenPosition = self.to_screen(position)
|
||||
endpoints = self.getEndpoints( direction, position )
|
||||
r = PACMAN_SCALE * self.gridSize
|
||||
moveCircle(image[0], screenPosition, r, endpoints)
|
||||
refresh()
|
||||
|
||||
def animatePacman(self, pacman, prevPacman, image):
|
||||
if self.frameTime < 0:
|
||||
print 'Press any key to step forward, "q" to play'
|
||||
keys = wait_for_keys()
|
||||
if 'q' in keys:
|
||||
self.frameTime = 0.1
|
||||
if self.frameTime > 0.01 or self.frameTime < 0:
|
||||
start = time.time()
|
||||
fx, fy = self.getPosition(prevPacman)
|
||||
px, py = self.getPosition(pacman)
|
||||
frames = 4.0
|
||||
for i in range(1,int(frames) + 1):
|
||||
pos = px*i/frames + fx*(frames-i)/frames, py*i/frames + fy*(frames-i)/frames
|
||||
self.movePacman(pos, self.getDirection(pacman), image)
|
||||
refresh()
|
||||
sleep(abs(self.frameTime) / frames)
|
||||
else:
|
||||
self.movePacman(self.getPosition(pacman), self.getDirection(pacman), image)
|
||||
refresh()
|
||||
|
||||
def getGhostColor(self, ghost, ghostIndex):
|
||||
if ghost.scaredTimer > 0:
|
||||
return SCARED_COLOR
|
||||
else:
|
||||
return GHOST_COLORS[ghostIndex]
|
||||
|
||||
def drawGhost(self, ghost, agentIndex):
|
||||
pos = self.getPosition(ghost)
|
||||
dir = self.getDirection(ghost)
|
||||
(screen_x, screen_y) = (self.to_screen(pos) )
|
||||
coords = []
|
||||
for (x, y) in GHOST_SHAPE:
|
||||
coords.append((x*self.gridSize*GHOST_SIZE + screen_x, y*self.gridSize*GHOST_SIZE + screen_y))
|
||||
|
||||
colour = self.getGhostColor(ghost, agentIndex)
|
||||
body = polygon(coords, colour, filled = 1)
|
||||
WHITE = formatColor(1.0, 1.0, 1.0)
|
||||
BLACK = formatColor(0.0, 0.0, 0.0)
|
||||
|
||||
dx = 0
|
||||
dy = 0
|
||||
if dir == 'North':
|
||||
dy = -0.2
|
||||
if dir == 'South':
|
||||
dy = 0.2
|
||||
if dir == 'East':
|
||||
dx = 0.2
|
||||
if dir == 'West':
|
||||
dx = -0.2
|
||||
leftEye = circle((screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE)
|
||||
rightEye = circle((screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE)
|
||||
leftPupil = circle((screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK)
|
||||
rightPupil = circle((screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK)
|
||||
ghostImageParts = []
|
||||
ghostImageParts.append(body)
|
||||
ghostImageParts.append(leftEye)
|
||||
ghostImageParts.append(rightEye)
|
||||
ghostImageParts.append(leftPupil)
|
||||
ghostImageParts.append(rightPupil)
|
||||
|
||||
return ghostImageParts
|
||||
|
||||
def moveEyes(self, pos, dir, eyes):
|
||||
(screen_x, screen_y) = (self.to_screen(pos) )
|
||||
dx = 0
|
||||
dy = 0
|
||||
if dir == 'North':
|
||||
dy = -0.2
|
||||
if dir == 'South':
|
||||
dy = 0.2
|
||||
if dir == 'East':
|
||||
dx = 0.2
|
||||
if dir == 'West':
|
||||
dx = -0.2
|
||||
moveCircle(eyes[0],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2)
|
||||
moveCircle(eyes[1],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2)
|
||||
moveCircle(eyes[2],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08)
|
||||
moveCircle(eyes[3],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08)
|
||||
|
||||
def moveGhost(self, ghost, ghostIndex, prevGhost, ghostImageParts):
|
||||
old_x, old_y = self.to_screen(self.getPosition(prevGhost))
|
||||
new_x, new_y = self.to_screen(self.getPosition(ghost))
|
||||
delta = new_x - old_x, new_y - old_y
|
||||
|
||||
for ghostImagePart in ghostImageParts:
|
||||
move_by(ghostImagePart, delta)
|
||||
refresh()
|
||||
|
||||
if ghost.scaredTimer > 0:
|
||||
color = SCARED_COLOR
|
||||
else:
|
||||
color = GHOST_COLORS[ghostIndex]
|
||||
edit(ghostImageParts[0], ('fill', color), ('outline', color))
|
||||
self.moveEyes(self.getPosition(ghost), self.getDirection(ghost), ghostImageParts[-4:])
|
||||
refresh()
|
||||
|
||||
def getPosition(self, agentState):
|
||||
if agentState.configuration == None: return (-1000, -1000)
|
||||
return agentState.getPosition()
|
||||
|
||||
def getDirection(self, agentState):
|
||||
if agentState.configuration == None: return Directions.STOP
|
||||
return agentState.configuration.getDirection()
|
||||
|
||||
def finish(self):
|
||||
end_graphics()
|
||||
|
||||
def to_screen(self, point):
|
||||
( x, y ) = point
|
||||
#y = self.height - y
|
||||
x = (x + 1)*self.gridSize
|
||||
y = (self.height - y)*self.gridSize
|
||||
return ( x, y )
|
||||
|
||||
# Fixes some TK issue with off-center circles
|
||||
def to_screen2(self, point):
|
||||
( x, y ) = point
|
||||
#y = self.height - y
|
||||
x = (x + 1)*self.gridSize
|
||||
y = (self.height - y)*self.gridSize
|
||||
return ( x, y )
|
||||
|
||||
def drawWalls(self, wallMatrix):
|
||||
wallColor = WALL_COLOR
|
||||
for xNum, x in enumerate(wallMatrix):
|
||||
if self.capture and (xNum * 2) < wallMatrix.width: wallColor = TEAM_COLORS[0]
|
||||
if self.capture and (xNum * 2) >= wallMatrix.width: wallColor = TEAM_COLORS[1]
|
||||
|
||||
for yNum, cell in enumerate(x):
|
||||
if cell: # There's a wall here
|
||||
pos = (xNum, yNum)
|
||||
screen = self.to_screen(pos)
|
||||
screen2 = self.to_screen2(pos)
|
||||
|
||||
# draw each quadrant of the square based on adjacent walls
|
||||
wIsWall = self.isWall(xNum-1, yNum, wallMatrix)
|
||||
eIsWall = self.isWall(xNum+1, yNum, wallMatrix)
|
||||
nIsWall = self.isWall(xNum, yNum+1, wallMatrix)
|
||||
sIsWall = self.isWall(xNum, yNum-1, wallMatrix)
|
||||
nwIsWall = self.isWall(xNum-1, yNum+1, wallMatrix)
|
||||
swIsWall = self.isWall(xNum-1, yNum-1, wallMatrix)
|
||||
neIsWall = self.isWall(xNum+1, yNum+1, wallMatrix)
|
||||
seIsWall = self.isWall(xNum+1, yNum-1, wallMatrix)
|
||||
|
||||
# NE quadrant
|
||||
if (not nIsWall) and (not eIsWall):
|
||||
# inner circle
|
||||
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (0,91), 'arc')
|
||||
if (nIsWall) and (not eIsWall):
|
||||
# vertical line
|
||||
line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor)
|
||||
if (not nIsWall) and (eIsWall):
|
||||
# horizontal line
|
||||
line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
|
||||
if (nIsWall) and (eIsWall) and (not neIsWall):
|
||||
# outer circle
|
||||
circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (180,271), 'arc')
|
||||
line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
|
||||
line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5))), wallColor)
|
||||
|
||||
# NW quadrant
|
||||
if (not nIsWall) and (not wIsWall):
|
||||
# inner circle
|
||||
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (90,181), 'arc')
|
||||
if (nIsWall) and (not wIsWall):
|
||||
# vertical line
|
||||
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor)
|
||||
if (not nIsWall) and (wIsWall):
|
||||
# horizontal line
|
||||
line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
|
||||
if (nIsWall) and (wIsWall) and (not nwIsWall):
|
||||
# outer circle
|
||||
circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (270,361), 'arc')
|
||||
line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(-1)*WALL_RADIUS)), wallColor)
|
||||
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5))), wallColor)
|
||||
|
||||
# SE quadrant
|
||||
if (not sIsWall) and (not eIsWall):
|
||||
# inner circle
|
||||
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (270,361), 'arc')
|
||||
if (sIsWall) and (not eIsWall):
|
||||
# vertical line
|
||||
line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor)
|
||||
if (not sIsWall) and (eIsWall):
|
||||
# horizontal line
|
||||
line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(1)*WALL_RADIUS)), wallColor)
|
||||
if (sIsWall) and (eIsWall) and (not seIsWall):
|
||||
# outer circle
|
||||
circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (90,181), 'arc')
|
||||
line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5, self.gridSize*(1)*WALL_RADIUS)), wallColor)
|
||||
line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5))), wallColor)
|
||||
|
||||
# SW quadrant
|
||||
if (not sIsWall) and (not wIsWall):
|
||||
# inner circle
|
||||
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (180,271), 'arc')
|
||||
if (sIsWall) and (not wIsWall):
|
||||
# vertical line
|
||||
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor)
|
||||
if (not sIsWall) and (wIsWall):
|
||||
# horizontal line
|
||||
line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(1)*WALL_RADIUS)), wallColor)
|
||||
if (sIsWall) and (wIsWall) and (not swIsWall):
|
||||
# outer circle
|
||||
circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (0,91), 'arc')
|
||||
line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(1)*WALL_RADIUS)), wallColor)
|
||||
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5))), wallColor)
|
||||
|
||||
def isWall(self, x, y, walls):
|
||||
if x < 0 or y < 0:
|
||||
return False
|
||||
if x >= walls.width or y >= walls.height:
|
||||
return False
|
||||
return walls[x][y]
|
||||
|
||||
def drawFood(self, foodMatrix ):
|
||||
foodImages = []
|
||||
color = FOOD_COLOR
|
||||
for xNum, x in enumerate(foodMatrix):
|
||||
if self.capture and (xNum * 2) <= foodMatrix.width: color = TEAM_COLORS[0]
|
||||
if self.capture and (xNum * 2) > foodMatrix.width: color = TEAM_COLORS[1]
|
||||
imageRow = []
|
||||
foodImages.append(imageRow)
|
||||
for yNum, cell in enumerate(x):
|
||||
if cell: # There's food here
|
||||
screen = self.to_screen((xNum, yNum ))
|
||||
dot = circle( screen,
|
||||
FOOD_SIZE * self.gridSize,
|
||||
outlineColor = color, fillColor = color,
|
||||
width = 1)
|
||||
imageRow.append(dot)
|
||||
else:
|
||||
imageRow.append(None)
|
||||
return foodImages
|
||||
|
||||
def drawCapsules(self, capsules ):
|
||||
capsuleImages = {}
|
||||
for capsule in capsules:
|
||||
( screen_x, screen_y ) = self.to_screen(capsule)
|
||||
dot = circle( (screen_x, screen_y),
|
||||
CAPSULE_SIZE * self.gridSize,
|
||||
outlineColor = CAPSULE_COLOR,
|
||||
fillColor = CAPSULE_COLOR,
|
||||
width = 1)
|
||||
capsuleImages[capsule] = dot
|
||||
return capsuleImages
|
||||
|
||||
def removeFood(self, cell, foodImages ):
|
||||
x, y = cell
|
||||
remove_from_screen(foodImages[x][y])
|
||||
|
||||
def removeCapsule(self, cell, capsuleImages ):
|
||||
x, y = cell
|
||||
remove_from_screen(capsuleImages[(x, y)])
|
||||
|
||||
def drawExpandedCells(self, cells):
|
||||
"""
|
||||
Draws an overlay of expanded grid positions for search agents
|
||||
"""
|
||||
n = float(len(cells))
|
||||
baseColor = [1.0, 0.0, 0.0]
|
||||
self.clearExpandedCells()
|
||||
self.expandedCells = []
|
||||
for k, cell in enumerate(cells):
|
||||
screenPos = self.to_screen( cell)
|
||||
cellColor = formatColor(*[(n-k) * c * .5 / n + .25 for c in baseColor])
|
||||
block = square(screenPos,
|
||||
0.5 * self.gridSize,
|
||||
color = cellColor,
|
||||
filled = 1, behind=2)
|
||||
self.expandedCells.append(block)
|
||||
if self.frameTime < 0:
|
||||
refresh()
|
||||
|
||||
def clearExpandedCells(self):
|
||||
if 'expandedCells' in dir(self) and len(self.expandedCells) > 0:
|
||||
for cell in self.expandedCells:
|
||||
remove_from_screen(cell)
|
||||
|
||||
|
||||
def updateDistributions(self, distributions):
|
||||
"Draws an agent's belief distributions"
|
||||
# copy all distributions so we don't change their state
|
||||
distributions = map(lambda x: x.copy(), distributions)
|
||||
if self.distributionImages == None:
|
||||
self.drawDistributions(self.previousState)
|
||||
for x in range(len(self.distributionImages)):
|
||||
for y in range(len(self.distributionImages[0])):
|
||||
image = self.distributionImages[x][y]
|
||||
weights = [dist[ (x,y) ] for dist in distributions]
|
||||
|
||||
if sum(weights) != 0:
|
||||
pass
|
||||
# Fog of war
|
||||
color = [0.0,0.0,0.0]
|
||||
colors = GHOST_VEC_COLORS[1:] # With Pacman
|
||||
if self.capture: colors = GHOST_VEC_COLORS
|
||||
for weight, gcolor in zip(weights, colors):
|
||||
color = [min(1.0, c + 0.95 * g * weight ** .3) for c,g in zip(color, gcolor)]
|
||||
changeColor(image, formatColor(*color))
|
||||
refresh()
|
||||
|
||||
class FirstPersonPacmanGraphics(PacmanGraphics):
|
||||
def __init__(self, zoom = 1.0, showGhosts = True, capture = False, frameTime=0):
|
||||
PacmanGraphics.__init__(self, zoom, frameTime=frameTime)
|
||||
self.showGhosts = showGhosts
|
||||
self.capture = capture
|
||||
|
||||
def initialize(self, state, isBlue = False):
|
||||
|
||||
self.isBlue = isBlue
|
||||
PacmanGraphics.startGraphics(self, state)
|
||||
# Initialize distribution images
|
||||
walls = state.layout.walls
|
||||
dist = []
|
||||
self.layout = state.layout
|
||||
|
||||
# Draw the rest
|
||||
self.distributionImages = None # initialize lazily
|
||||
self.drawStaticObjects(state)
|
||||
self.drawAgentObjects(state)
|
||||
|
||||
# Information
|
||||
self.previousState = state
|
||||
|
||||
def lookAhead(self, config, state):
|
||||
if config.getDirection() == 'Stop':
|
||||
return
|
||||
else:
|
||||
pass
|
||||
# Draw relevant ghosts
|
||||
allGhosts = state.getGhostStates()
|
||||
visibleGhosts = state.getVisibleGhosts()
|
||||
for i, ghost in enumerate(allGhosts):
|
||||
if ghost in visibleGhosts:
|
||||
self.drawGhost(ghost, i)
|
||||
else:
|
||||
self.currentGhostImages[i] = None
|
||||
|
||||
def getGhostColor(self, ghost, ghostIndex):
|
||||
return GHOST_COLORS[ghostIndex]
|
||||
|
||||
def getPosition(self, ghostState):
|
||||
if not self.showGhosts and not ghostState.isPacman and ghostState.getPosition()[1] > 1:
|
||||
return (-1000, -1000)
|
||||
else:
|
||||
return PacmanGraphics.getPosition(self, ghostState)
|
||||
|
||||
def add(x, y):
|
||||
return (x[0] + y[0], x[1] + y[1])
|
||||
|
||||
|
||||
# Saving graphical output
|
||||
# -----------------------
|
||||
# Note: to make an animated gif from this postscript output, try the command:
|
||||
# convert -delay 7 -loop 1 -compress lzw -layers optimize frame* out.gif
|
||||
# convert is part of imagemagick (freeware)
|
||||
|
||||
SAVE_POSTSCRIPT = False
|
||||
POSTSCRIPT_OUTPUT_DIR = 'frames'
|
||||
FRAME_NUMBER = 0
|
||||
import os
|
||||
|
||||
def saveFrame():
|
||||
"Saves the current graphical output as a postscript file"
|
||||
global SAVE_POSTSCRIPT, FRAME_NUMBER, POSTSCRIPT_OUTPUT_DIR
|
||||
if not SAVE_POSTSCRIPT: return
|
||||
if not os.path.exists(POSTSCRIPT_OUTPUT_DIR): os.mkdir(POSTSCRIPT_OUTPUT_DIR)
|
||||
name = os.path.join(POSTSCRIPT_OUTPUT_DIR, 'frame_%08d.ps' % FRAME_NUMBER)
|
||||
FRAME_NUMBER += 1
|
||||
writePostscript(name) # writes the current canvas
|
398
p5_classification/graphicsUtils.py
Normal file
@ -0,0 +1,398 @@
|
||||
# graphicsUtils.py
|
||||
# ----------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
import string
|
||||
import time
|
||||
import types
|
||||
import Tkinter
|
||||
|
||||
_Windows = sys.platform == 'win32' # True if on Win95/98/NT
|
||||
|
||||
_root_window = None # The root window for graphics output
|
||||
_canvas = None # The canvas which holds graphics
|
||||
_canvas_xs = None # Size of canvas object
|
||||
_canvas_ys = None
|
||||
_canvas_x = None # Current position on canvas
|
||||
_canvas_y = None
|
||||
_canvas_col = None # Current colour (set to black below)
|
||||
_canvas_tsize = 12
|
||||
_canvas_tserifs = 0
|
||||
|
||||
def formatColor(r, g, b):
|
||||
return '#%02x%02x%02x' % (int(r * 255), int(g * 255), int(b * 255))
|
||||
|
||||
def colorToVector(color):
|
||||
return map(lambda x: int(x, 16) / 256.0, [color[1:3], color[3:5], color[5:7]])
|
||||
|
||||
if _Windows:
|
||||
_canvas_tfonts = ['times new roman', 'lucida console']
|
||||
else:
|
||||
_canvas_tfonts = ['times', 'lucidasans-24']
|
||||
pass # XXX need defaults here
|
||||
|
||||
def sleep(secs):
|
||||
global _root_window
|
||||
if _root_window == None:
|
||||
time.sleep(secs)
|
||||
else:
|
||||
_root_window.update_idletasks()
|
||||
_root_window.after(int(1000 * secs), _root_window.quit)
|
||||
_root_window.mainloop()
|
||||
|
||||
def begin_graphics(width=640, height=480, color=formatColor(0, 0, 0), title=None):
|
||||
|
||||
global _root_window, _canvas, _canvas_x, _canvas_y, _canvas_xs, _canvas_ys, _bg_color
|
||||
|
||||
# Check for duplicate call
|
||||
if _root_window is not None:
|
||||
# Lose the window.
|
||||
_root_window.destroy()
|
||||
|
||||
# Save the canvas size parameters
|
||||
_canvas_xs, _canvas_ys = width - 1, height - 1
|
||||
_canvas_x, _canvas_y = 0, _canvas_ys
|
||||
_bg_color = color
|
||||
|
||||
# Create the root window
|
||||
_root_window = Tkinter.Tk()
|
||||
_root_window.protocol('WM_DELETE_WINDOW', _destroy_window)
|
||||
_root_window.title(title or 'Graphics Window')
|
||||
_root_window.resizable(0, 0)
|
||||
|
||||
# Create the canvas object
|
||||
try:
|
||||
_canvas = Tkinter.Canvas(_root_window, width=width, height=height)
|
||||
_canvas.pack()
|
||||
draw_background()
|
||||
_canvas.update()
|
||||
except:
|
||||
_root_window = None
|
||||
raise
|
||||
|
||||
# Bind to key-down and key-up events
|
||||
_root_window.bind( "<KeyPress>", _keypress )
|
||||
_root_window.bind( "<KeyRelease>", _keyrelease )
|
||||
_root_window.bind( "<FocusIn>", _clear_keys )
|
||||
_root_window.bind( "<FocusOut>", _clear_keys )
|
||||
_root_window.bind( "<Button-1>", _leftclick )
|
||||
_root_window.bind( "<Button-2>", _rightclick )
|
||||
_root_window.bind( "<Button-3>", _rightclick )
|
||||
_root_window.bind( "<Control-Button-1>", _ctrl_leftclick)
|
||||
_clear_keys()
|
||||
|
||||
_leftclick_loc = None
|
||||
_rightclick_loc = None
|
||||
_ctrl_leftclick_loc = None
|
||||
|
||||
def _leftclick(event):
|
||||
global _leftclick_loc
|
||||
_leftclick_loc = (event.x, event.y)
|
||||
|
||||
def _rightclick(event):
|
||||
global _rightclick_loc
|
||||
_rightclick_loc = (event.x, event.y)
|
||||
|
||||
def _ctrl_leftclick(event):
|
||||
global _ctrl_leftclick_loc
|
||||
_ctrl_leftclick_loc = (event.x, event.y)
|
||||
|
||||
def wait_for_click():
|
||||
while True:
|
||||
global _leftclick_loc
|
||||
global _rightclick_loc
|
||||
global _ctrl_leftclick_loc
|
||||
if _leftclick_loc != None:
|
||||
val = _leftclick_loc
|
||||
_leftclick_loc = None
|
||||
return val, 'left'
|
||||
if _rightclick_loc != None:
|
||||
val = _rightclick_loc
|
||||
_rightclick_loc = None
|
||||
return val, 'right'
|
||||
if _ctrl_leftclick_loc != None:
|
||||
val = _ctrl_leftclick_loc
|
||||
_ctrl_leftclick_loc = None
|
||||
return val, 'ctrl_left'
|
||||
sleep(0.05)
|
||||
|
||||
def draw_background():
|
||||
corners = [(0,0), (0, _canvas_ys), (_canvas_xs, _canvas_ys), (_canvas_xs, 0)]
|
||||
polygon(corners, _bg_color, fillColor=_bg_color, filled=True, smoothed=False)
|
||||
|
||||
def _destroy_window(event=None):
|
||||
sys.exit(0)
|
||||
# global _root_window
|
||||
# _root_window.destroy()
|
||||
# _root_window = None
|
||||
#print "DESTROY"
|
||||
|
||||
def end_graphics():
|
||||
global _root_window, _canvas, _mouse_enabled
|
||||
try:
|
||||
try:
|
||||
sleep(1)
|
||||
if _root_window != None:
|
||||
_root_window.destroy()
|
||||
except SystemExit, e:
|
||||
print 'Ending graphics raised an exception:', e
|
||||
finally:
|
||||
_root_window = None
|
||||
_canvas = None
|
||||
_mouse_enabled = 0
|
||||
_clear_keys()
|
||||
|
||||
def clear_screen(background=None):
|
||||
global _canvas_x, _canvas_y
|
||||
_canvas.delete('all')
|
||||
draw_background()
|
||||
_canvas_x, _canvas_y = 0, _canvas_ys
|
||||
|
||||
def polygon(coords, outlineColor, fillColor=None, filled=1, smoothed=1, behind=0, width=1):
|
||||
c = []
|
||||
for coord in coords:
|
||||
c.append(coord[0])
|
||||
c.append(coord[1])
|
||||
if fillColor == None: fillColor = outlineColor
|
||||
if filled == 0: fillColor = ""
|
||||
poly = _canvas.create_polygon(c, outline=outlineColor, fill=fillColor, smooth=smoothed, width=width)
|
||||
if behind > 0:
|
||||
_canvas.tag_lower(poly, behind) # Higher should be more visible
|
||||
return poly
|
||||
|
||||
def square(pos, r, color, filled=1, behind=0):
|
||||
x, y = pos
|
||||
coords = [(x - r, y - r), (x + r, y - r), (x + r, y + r), (x - r, y + r)]
|
||||
return polygon(coords, color, color, filled, 0, behind=behind)
|
||||
|
||||
def circle(pos, r, outlineColor, fillColor, endpoints=None, style='pieslice', width=2):
|
||||
x, y = pos
|
||||
x0, x1 = x - r - 1, x + r
|
||||
y0, y1 = y - r - 1, y + r
|
||||
if endpoints == None:
|
||||
e = [0, 359]
|
||||
else:
|
||||
e = list(endpoints)
|
||||
while e[0] > e[1]: e[1] = e[1] + 360
|
||||
|
||||
return _canvas.create_arc(x0, y0, x1, y1, outline=outlineColor, fill=fillColor,
|
||||
extent=e[1] - e[0], start=e[0], style=style, width=width)
|
||||
|
||||
def image(pos, file="../../blueghost.gif"):
|
||||
x, y = pos
|
||||
# img = PhotoImage(file=file)
|
||||
return _canvas.create_image(x, y, image = Tkinter.PhotoImage(file=file), anchor = Tkinter.NW)
|
||||
|
||||
|
||||
def refresh():
|
||||
_canvas.update_idletasks()
|
||||
|
||||
def moveCircle(id, pos, r, endpoints=None):
|
||||
global _canvas_x, _canvas_y
|
||||
|
||||
x, y = pos
|
||||
# x0, x1 = x - r, x + r + 1
|
||||
# y0, y1 = y - r, y + r + 1
|
||||
x0, x1 = x - r - 1, x + r
|
||||
y0, y1 = y - r - 1, y + r
|
||||
if endpoints == None:
|
||||
e = [0, 359]
|
||||
else:
|
||||
e = list(endpoints)
|
||||
while e[0] > e[1]: e[1] = e[1] + 360
|
||||
|
||||
edit(id, ('start', e[0]), ('extent', e[1] - e[0]))
|
||||
move_to(id, x0, y0)
|
||||
|
||||
def edit(id, *args):
|
||||
_canvas.itemconfigure(id, **dict(args))
|
||||
|
||||
def text(pos, color, contents, font='Helvetica', size=12, style='normal', anchor="nw"):
|
||||
global _canvas_x, _canvas_y
|
||||
x, y = pos
|
||||
font = (font, str(size), style)
|
||||
return _canvas.create_text(x, y, fill=color, text=contents, font=font, anchor=anchor)
|
||||
|
||||
def changeText(id, newText, font=None, size=12, style='normal'):
|
||||
_canvas.itemconfigure(id, text=newText)
|
||||
if font != None:
|
||||
_canvas.itemconfigure(id, font=(font, '-%d' % size, style))
|
||||
|
||||
def changeColor(id, newColor):
|
||||
_canvas.itemconfigure(id, fill=newColor)
|
||||
|
||||
def line(here, there, color=formatColor(0, 0, 0), width=2):
|
||||
x0, y0 = here[0], here[1]
|
||||
x1, y1 = there[0], there[1]
|
||||
return _canvas.create_line(x0, y0, x1, y1, fill=color, width=width)
|
||||
|
||||
##############################################################################
|
||||
### Keypress handling ########################################################
|
||||
##############################################################################
|
||||
|
||||
# We bind to key-down and key-up events.
|
||||
|
||||
_keysdown = {}
|
||||
_keyswaiting = {}
|
||||
# This holds an unprocessed key release. We delay key releases by up to
|
||||
# one call to keys_pressed() to get round a problem with auto repeat.
|
||||
_got_release = None
|
||||
|
||||
def _keypress(event):
|
||||
global _got_release
|
||||
#remap_arrows(event)
|
||||
_keysdown[event.keysym] = 1
|
||||
_keyswaiting[event.keysym] = 1
|
||||
# print event.char, event.keycode
|
||||
_got_release = None
|
||||
|
||||
def _keyrelease(event):
|
||||
global _got_release
|
||||
#remap_arrows(event)
|
||||
try:
|
||||
del _keysdown[event.keysym]
|
||||
except:
|
||||
pass
|
||||
_got_release = 1
|
||||
|
||||
def remap_arrows(event):
|
||||
# TURN ARROW PRESSES INTO LETTERS (SHOULD BE IN KEYBOARD AGENT)
|
||||
if event.char in ['a', 's', 'd', 'w']:
|
||||
return
|
||||
if event.keycode in [37, 101]: # LEFT ARROW (win / x)
|
||||
event.char = 'a'
|
||||
if event.keycode in [38, 99]: # UP ARROW
|
||||
event.char = 'w'
|
||||
if event.keycode in [39, 102]: # RIGHT ARROW
|
||||
event.char = 'd'
|
||||
if event.keycode in [40, 104]: # DOWN ARROW
|
||||
event.char = 's'
|
||||
|
||||
def _clear_keys(event=None):
|
||||
global _keysdown, _got_release, _keyswaiting
|
||||
_keysdown = {}
|
||||
_keyswaiting = {}
|
||||
_got_release = None
|
||||
|
||||
def keys_pressed(d_o_e=Tkinter.tkinter.dooneevent,
|
||||
d_w=Tkinter.tkinter.DONT_WAIT):
|
||||
d_o_e(d_w)
|
||||
if _got_release:
|
||||
d_o_e(d_w)
|
||||
return _keysdown.keys()
|
||||
|
||||
def keys_waiting():
|
||||
global _keyswaiting
|
||||
keys = _keyswaiting.keys()
|
||||
_keyswaiting = {}
|
||||
return keys
|
||||
|
||||
# Block for a list of keys...
|
||||
|
||||
def wait_for_keys():
|
||||
keys = []
|
||||
while keys == []:
|
||||
keys = keys_pressed()
|
||||
sleep(0.05)
|
||||
return keys
|
||||
|
||||
def remove_from_screen(x,
|
||||
d_o_e=Tkinter.tkinter.dooneevent,
|
||||
d_w=Tkinter.tkinter.DONT_WAIT):
|
||||
_canvas.delete(x)
|
||||
d_o_e(d_w)
|
||||
|
||||
def _adjust_coords(coord_list, x, y):
|
||||
for i in range(0, len(coord_list), 2):
|
||||
coord_list[i] = coord_list[i] + x
|
||||
coord_list[i + 1] = coord_list[i + 1] + y
|
||||
return coord_list
|
||||
|
||||
def move_to(object, x, y=None,
|
||||
d_o_e=Tkinter.tkinter.dooneevent,
|
||||
d_w=Tkinter.tkinter.DONT_WAIT):
|
||||
if y is None:
|
||||
try: x, y = x
|
||||
except: raise 'incomprehensible coordinates'
|
||||
|
||||
horiz = True
|
||||
newCoords = []
|
||||
current_x, current_y = _canvas.coords(object)[0:2] # first point
|
||||
for coord in _canvas.coords(object):
|
||||
if horiz:
|
||||
inc = x - current_x
|
||||
else:
|
||||
inc = y - current_y
|
||||
horiz = not horiz
|
||||
|
||||
newCoords.append(coord + inc)
|
||||
|
||||
_canvas.coords(object, *newCoords)
|
||||
d_o_e(d_w)
|
||||
|
||||
def move_by(object, x, y=None,
|
||||
d_o_e=Tkinter.tkinter.dooneevent,
|
||||
d_w=Tkinter.tkinter.DONT_WAIT, lift=False):
|
||||
if y is None:
|
||||
try: x, y = x
|
||||
except: raise Exception, 'incomprehensible coordinates'
|
||||
|
||||
horiz = True
|
||||
newCoords = []
|
||||
for coord in _canvas.coords(object):
|
||||
if horiz:
|
||||
inc = x
|
||||
else:
|
||||
inc = y
|
||||
horiz = not horiz
|
||||
|
||||
newCoords.append(coord + inc)
|
||||
|
||||
_canvas.coords(object, *newCoords)
|
||||
d_o_e(d_w)
|
||||
if lift:
|
||||
_canvas.tag_raise(object)
|
||||
|
||||
def writePostscript(filename):
|
||||
"Writes the current canvas to a postscript file."
|
||||
psfile = file(filename, 'w')
|
||||
psfile.write(_canvas.postscript(pageanchor='sw',
|
||||
y='0.c',
|
||||
x='0.c'))
|
||||
psfile.close()
|
||||
|
||||
ghost_shape = [
|
||||
(0, - 0.5),
|
||||
(0.25, - 0.75),
|
||||
(0.5, - 0.5),
|
||||
(0.75, - 0.75),
|
||||
(0.75, 0.5),
|
||||
(0.5, 0.75),
|
||||
(- 0.5, 0.75),
|
||||
(- 0.75, 0.5),
|
||||
(- 0.75, - 0.75),
|
||||
(- 0.5, - 0.5),
|
||||
(- 0.25, - 0.75)
|
||||
]
|
||||
|
||||
if __name__ == '__main__':
|
||||
begin_graphics()
|
||||
clear_screen()
|
||||
ghost_shape = [(x * 10 + 20, y * 10 + 20) for x, y in ghost_shape]
|
||||
g = polygon(ghost_shape, formatColor(1, 1, 1))
|
||||
move_to(g, (50, 50))
|
||||
circle((150, 150), 20, formatColor(0.7, 0.3, 0.0), endpoints=[15, - 15])
|
||||
sleep(2)
|
BIN
p5_classification/images/2002_08_07_img_1578.0.jpg
Executable file
After Width: | Height: | Size: 5.4 KiB |
BIN
p5_classification/images/2002_09_05_img_12098.0.jpg
Executable file
After Width: | Height: | Size: 2.0 KiB |
BIN
p5_classification/images/2002_09_26_img_513.1.jpg
Executable file
After Width: | Height: | Size: 1.9 KiB |
BIN
p5_classification/images/2002_10_17_img_647.0.jpg
Executable file
After Width: | Height: | Size: 1.9 KiB |
BIN
p5_classification/images/2002_10_30_img_478.0.jpg
Executable file
After Width: | Height: | Size: 2.1 KiB |
BIN
p5_classification/images/2002_10_31_img_507.0.jpg
Executable file
After Width: | Height: | Size: 2.1 KiB |
BIN
p5_classification/images/2003_02_13_img_642.0.jpg
Executable file
After Width: | Height: | Size: 2.0 KiB |
BIN
p5_classification/images/2003_05_15_img_1197.0.jpg
Executable file
After Width: | Height: | Size: 1.9 KiB |
BIN
p5_classification/images/2003_07_04_img_502.0.jpg
Executable file
After Width: | Height: | Size: 2.0 KiB |
BIN
p5_classification/images/2003_07_12_img_589.0.jpg
Executable file
After Width: | Height: | Size: 2.1 KiB |
BIN
p5_classification/images/i1.jpg
Normal file
After Width: | Height: | Size: 3.0 KiB |
BIN
p5_classification/images/i2.jpg
Normal file
After Width: | Height: | Size: 2.8 KiB |
BIN
p5_classification/images/i3.jpg
Normal file
After Width: | Height: | Size: 3.2 KiB |
BIN
p5_classification/images/i4.jpg
Normal file
After Width: | Height: | Size: 2.3 KiB |
BIN
p5_classification/images/i5.jpg
Normal file
After Width: | Height: | Size: 3.2 KiB |
BIN
p5_classification/images/i6.jpg
Normal file
After Width: | Height: | Size: 2.6 KiB |
BIN
p5_classification/images/i7.jpg
Normal file
After Width: | Height: | Size: 3.4 KiB |
BIN
p5_classification/images/i8.jpg
Normal file
After Width: | Height: | Size: 2.9 KiB |
BIN
p5_classification/images/i9.jpg
Normal file
After Width: | Height: | Size: 3.0 KiB |
BIN
p5_classification/images/image_0056.jpg
Executable file
After Width: | Height: | Size: 12 KiB |
BIN
p5_classification/images/image_0067.jpg
Executable file
After Width: | Height: | Size: 19 KiB |
BIN
p5_classification/images/image_0128.jpg
Executable file
After Width: | Height: | Size: 14 KiB |
BIN
p5_classification/images/image_0193.jpg
Executable file
After Width: | Height: | Size: 11 KiB |
BIN
p5_classification/images/image_0196.jpg
Executable file
After Width: | Height: | Size: 4.6 KiB |
BIN
p5_classification/images/image_0332.jpg
Executable file
After Width: | Height: | Size: 9.6 KiB |
BIN
p5_classification/images/img2
Normal file
After Width: | Height: | Size: 1.1 KiB |
BIN
p5_classification/images/img2.gif
Executable file
After Width: | Height: | Size: 9.3 KiB |
84
p5_classification/keyboardAgents.py
Normal file
@ -0,0 +1,84 @@
|
||||
# keyboardAgents.py
|
||||
# -----------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from game import Agent
|
||||
from game import Directions
|
||||
import random
|
||||
|
||||
class KeyboardAgent(Agent):
|
||||
"""
|
||||
An agent controlled by the keyboard.
|
||||
"""
|
||||
# NOTE: Arrow keys also work.
|
||||
WEST_KEY = 'a'
|
||||
EAST_KEY = 'd'
|
||||
NORTH_KEY = 'w'
|
||||
SOUTH_KEY = 's'
|
||||
STOP_KEY = 'q'
|
||||
|
||||
def __init__( self, index = 0 ):
|
||||
|
||||
self.lastMove = Directions.STOP
|
||||
self.index = index
|
||||
self.keys = []
|
||||
|
||||
def getAction( self, state):
|
||||
from graphicsUtils import keys_waiting
|
||||
from graphicsUtils import keys_pressed
|
||||
keys = keys_waiting() + keys_pressed()
|
||||
if keys != []:
|
||||
self.keys = keys
|
||||
|
||||
legal = state.getLegalActions(self.index)
|
||||
move = self.getMove(legal)
|
||||
|
||||
if move == Directions.STOP:
|
||||
# Try to move in the same direction as before
|
||||
if self.lastMove in legal:
|
||||
move = self.lastMove
|
||||
|
||||
if (self.STOP_KEY in self.keys) and Directions.STOP in legal: move = Directions.STOP
|
||||
|
||||
if move not in legal:
|
||||
move = random.choice(legal)
|
||||
|
||||
self.lastMove = move
|
||||
return move
|
||||
|
||||
def getMove(self, legal):
|
||||
move = Directions.STOP
|
||||
if (self.WEST_KEY in self.keys or 'Left' in self.keys) and Directions.WEST in legal: move = Directions.WEST
|
||||
if (self.EAST_KEY in self.keys or 'Right' in self.keys) and Directions.EAST in legal: move = Directions.EAST
|
||||
if (self.NORTH_KEY in self.keys or 'Up' in self.keys) and Directions.NORTH in legal: move = Directions.NORTH
|
||||
if (self.SOUTH_KEY in self.keys or 'Down' in self.keys) and Directions.SOUTH in legal: move = Directions.SOUTH
|
||||
return move
|
||||
|
||||
class KeyboardAgent2(KeyboardAgent):
|
||||
"""
|
||||
A second agent controlled by the keyboard.
|
||||
"""
|
||||
# NOTE: Arrow keys also work.
|
||||
WEST_KEY = 'j'
|
||||
EAST_KEY = "l"
|
||||
NORTH_KEY = 'i'
|
||||
SOUTH_KEY = 'k'
|
||||
STOP_KEY = 'u'
|
||||
|
||||
def getMove(self, legal):
|
||||
move = Directions.STOP
|
||||
if (self.WEST_KEY in self.keys) and Directions.WEST in legal: move = Directions.WEST
|
||||
if (self.EAST_KEY in self.keys) and Directions.EAST in legal: move = Directions.EAST
|
||||
if (self.NORTH_KEY in self.keys) and Directions.NORTH in legal: move = Directions.NORTH
|
||||
if (self.SOUTH_KEY in self.keys) and Directions.SOUTH in legal: move = Directions.SOUTH
|
||||
return move
|
149
p5_classification/layout.py
Normal file
@ -0,0 +1,149 @@
|
||||
# layout.py
|
||||
# ---------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from util import manhattanDistance
|
||||
from game import Grid
|
||||
import os
|
||||
import random
|
||||
|
||||
VISIBILITY_MATRIX_CACHE = {}
|
||||
|
||||
class Layout:
|
||||
"""
|
||||
A Layout manages the static information about the game board.
|
||||
"""
|
||||
|
||||
def __init__(self, layoutText):
|
||||
self.width = len(layoutText[0])
|
||||
self.height= len(layoutText)
|
||||
self.walls = Grid(self.width, self.height, False)
|
||||
self.food = Grid(self.width, self.height, False)
|
||||
self.capsules = []
|
||||
self.agentPositions = []
|
||||
self.numGhosts = 0
|
||||
self.processLayoutText(layoutText)
|
||||
self.layoutText = layoutText
|
||||
self.totalFood = len(self.food.asList())
|
||||
# self.initializeVisibilityMatrix()
|
||||
|
||||
def getNumGhosts(self):
|
||||
return self.numGhosts
|
||||
|
||||
def initializeVisibilityMatrix(self):
|
||||
global VISIBILITY_MATRIX_CACHE
|
||||
if reduce(str.__add__, self.layoutText) not in VISIBILITY_MATRIX_CACHE:
|
||||
from game import Directions
|
||||
vecs = [(-0.5,0), (0.5,0),(0,-0.5),(0,0.5)]
|
||||
dirs = [Directions.NORTH, Directions.SOUTH, Directions.WEST, Directions.EAST]
|
||||
vis = Grid(self.width, self.height, {Directions.NORTH:set(), Directions.SOUTH:set(), Directions.EAST:set(), Directions.WEST:set(), Directions.STOP:set()})
|
||||
for x in range(self.width):
|
||||
for y in range(self.height):
|
||||
if self.walls[x][y] == False:
|
||||
for vec, direction in zip(vecs, dirs):
|
||||
dx, dy = vec
|
||||
nextx, nexty = x + dx, y + dy
|
||||
while (nextx + nexty) != int(nextx) + int(nexty) or not self.walls[int(nextx)][int(nexty)] :
|
||||
vis[x][y][direction].add((nextx, nexty))
|
||||
nextx, nexty = x + dx, y + dy
|
||||
self.visibility = vis
|
||||
VISIBILITY_MATRIX_CACHE[reduce(str.__add__, self.layoutText)] = vis
|
||||
else:
|
||||
self.visibility = VISIBILITY_MATRIX_CACHE[reduce(str.__add__, self.layoutText)]
|
||||
|
||||
def isWall(self, pos):
|
||||
x, col = pos
|
||||
return self.walls[x][col]
|
||||
|
||||
def getRandomLegalPosition(self):
|
||||
x = random.choice(range(self.width))
|
||||
y = random.choice(range(self.height))
|
||||
while self.isWall( (x, y) ):
|
||||
x = random.choice(range(self.width))
|
||||
y = random.choice(range(self.height))
|
||||
return (x,y)
|
||||
|
||||
def getRandomCorner(self):
|
||||
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
|
||||
return random.choice(poses)
|
||||
|
||||
def getFurthestCorner(self, pacPos):
|
||||
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
|
||||
dist, pos = max([(manhattanDistance(p, pacPos), p) for p in poses])
|
||||
return pos
|
||||
|
||||
def isVisibleFrom(self, ghostPos, pacPos, pacDirection):
|
||||
row, col = [int(x) for x in pacPos]
|
||||
return ghostPos in self.visibility[row][col][pacDirection]
|
||||
|
||||
def __str__(self):
|
||||
return "\n".join(self.layoutText)
|
||||
|
||||
def deepCopy(self):
|
||||
return Layout(self.layoutText[:])
|
||||
|
||||
def processLayoutText(self, layoutText):
|
||||
"""
|
||||
Coordinates are flipped from the input format to the (x,y) convention here
|
||||
|
||||
The shape of the maze. Each character
|
||||
represents a different type of object.
|
||||
% - Wall
|
||||
. - Food
|
||||
o - Capsule
|
||||
G - Ghost
|
||||
P - Pacman
|
||||
Other characters are ignored.
|
||||
"""
|
||||
maxY = self.height - 1
|
||||
for y in range(self.height):
|
||||
for x in range(self.width):
|
||||
layoutChar = layoutText[maxY - y][x]
|
||||
self.processLayoutChar(x, y, layoutChar)
|
||||
self.agentPositions.sort()
|
||||
self.agentPositions = [ ( i == 0, pos) for i, pos in self.agentPositions]
|
||||
|
||||
def processLayoutChar(self, x, y, layoutChar):
|
||||
if layoutChar == '%':
|
||||
self.walls[x][y] = True
|
||||
elif layoutChar == '.':
|
||||
self.food[x][y] = True
|
||||
elif layoutChar == 'o':
|
||||
self.capsules.append((x, y))
|
||||
elif layoutChar == 'P':
|
||||
self.agentPositions.append( (0, (x, y) ) )
|
||||
elif layoutChar in ['G']:
|
||||
self.agentPositions.append( (1, (x, y) ) )
|
||||
self.numGhosts += 1
|
||||
elif layoutChar in ['1', '2', '3', '4']:
|
||||
self.agentPositions.append( (int(layoutChar), (x,y)))
|
||||
self.numGhosts += 1
|
||||
def getLayout(name, back = 2):
|
||||
if name.endswith('.lay'):
|
||||
layout = tryToLoad('layouts/' + name)
|
||||
if layout == None: layout = tryToLoad(name)
|
||||
else:
|
||||
layout = tryToLoad('layouts/' + name + '.lay')
|
||||
if layout == None: layout = tryToLoad(name + '.lay')
|
||||
if layout == None and back >= 0:
|
||||
curdir = os.path.abspath('.')
|
||||
os.chdir('..')
|
||||
layout = getLayout(name, back -1)
|
||||
os.chdir(curdir)
|
||||
return layout
|
||||
|
||||
def tryToLoad(fullname):
|
||||
if(not os.path.exists(fullname)): return None
|
||||
f = open(fullname)
|
||||
try: return Layout([line.strip() for line in f])
|
||||
finally: f.close()
|
7
p5_classification/layouts/capsuleClassic.lay
Normal file
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%%%%%%%%%%%
|
||||
%G. G ....%
|
||||
%.% % %%%%%% %.%%.%
|
||||
%.%o% % o% %.o%.%
|
||||
%.%%%.% %%% %..%.%
|
||||
%..... P %..%G%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
9
p5_classification/layouts/contestClassic.lay
Normal file
@ -0,0 +1,9 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%o...%........%...o%
|
||||
%.%%.%.%%..%%.%.%%.%
|
||||
%...... G GG%......%
|
||||
%.%.%%.%% %%%.%%.%.%
|
||||
%.%....% ooo%.%..%.%
|
||||
%.%.%%.% %% %.%.%%.%
|
||||
%o%......P....%....%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
11
p5_classification/layouts/mediumClassic.lay
Normal file
@ -0,0 +1,11 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%o...%........%....%
|
||||
%.%%.%.%%%%%%.%.%%.%
|
||||
%.%..............%.%
|
||||
%.%.%%.%% %%.%%.%.%
|
||||
%......%G G%......%
|
||||
%.%.%%.%%%%%%.%%.%.%
|
||||
%.%..............%.%
|
||||
%.%%.%.%%%%%%.%.%%.%
|
||||
%....%...P....%...o%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
5
p5_classification/layouts/minimaxClassic.lay
Normal file
@ -0,0 +1,5 @@
|
||||
%%%%%%%%%
|
||||
%.P G%
|
||||
% %.%G%%%
|
||||
%G %%%
|
||||
%%%%%%%%%
|
9
p5_classification/layouts/openClassic.lay
Normal file
@ -0,0 +1,9 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%.. P .... .... %
|
||||
%.. ... ... ... ... %
|
||||
%.. ... ... ... ... %
|
||||
%.. .... .... G %
|
||||
%.. ... ... ... ... %
|
||||
%.. ... ... ... ... %
|
||||
%.. .... .... o%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%
|
27
p5_classification/layouts/originalClassic.lay
Normal file
@ -0,0 +1,27 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%............%%............%
|
||||
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
|
||||
%o%%%%.%%%%%.%%.%%%%%.%%%%o%
|
||||
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
|
||||
%..........................%
|
||||
%.%%%%.%%.%%%%%%%%.%%.%%%%.%
|
||||
%.%%%%.%%.%%%%%%%%.%%.%%%%.%
|
||||
%......%%....%%....%%......%
|
||||
%%%%%%.%%%%% %% %%%%%.%%%%%%
|
||||
%%%%%%.%%%%% %% %%%%%.%%%%%%
|
||||
%%%%%%.% %.%%%%%%
|
||||
%%%%%%.% %%%% %%%% %.%%%%%%
|
||||
% . %G GG G% . %
|
||||
%%%%%%.% %%%%%%%%%% %.%%%%%%
|
||||
%%%%%%.% %.%%%%%%
|
||||
%%%%%%.% %%%%%%%%%% %.%%%%%%
|
||||
%............%%............%
|
||||
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
|
||||
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
|
||||
%o..%%....... .......%%..o%
|
||||
%%%.%%.%%.%%%%%%%%.%%.%%.%%%
|
||||
%%%.%%.%%.%%%%%%%%.%%.%%.%%%
|
||||
%......%%....%%....%%......%
|
||||
%.%%%%%%%%%%.%%.%%%%%%%%%%.%
|
||||
%.............P............%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
7
p5_classification/layouts/smallClassic.lay
Normal file
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%......%G G%......%
|
||||
%.%%...%% %%...%%.%
|
||||
%.%o.%........%.o%.%
|
||||
%.%%.%.%%%%%%.%.%%.%
|
||||
%........P.........%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
10
p5_classification/layouts/testClassic.lay
Normal file
@ -0,0 +1,10 @@
|
||||
%%%%%
|
||||
% . %
|
||||
%.G.%
|
||||
% . %
|
||||
%. .%
|
||||
% %
|
||||
% .%
|
||||
% %
|
||||
%P .%
|
||||
%%%%%
|
5
p5_classification/layouts/trappedClassic.lay
Normal file
@ -0,0 +1,5 @@
|
||||
%%%%%%%%
|
||||
% P G%
|
||||
%G%%%%%%
|
||||
%.... %
|
||||
%%%%%%%%
|
13
p5_classification/layouts/trickyClassic.lay
Normal file
@ -0,0 +1,13 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%o...%........%...o%
|
||||
%.%%.%.%%..%%.%.%%.%
|
||||
%.%.....%..%.....%.%
|
||||
%.%.%%.%% %%.%%.%.%
|
||||
%...... GGGG%.%....%
|
||||
%.%....%%%%%%.%..%.%
|
||||
%.%....% oo%.%..%.%
|
||||
%.%....% %%%%.%..%.%
|
||||
%.%...........%..%.%
|
||||
%.%%.%.%%%%%%.%.%%.%
|
||||
%o...%...P....%...o%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
81
p5_classification/mira.py
Normal file
@ -0,0 +1,81 @@
|
||||
# mira.py
|
||||
# -------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
# Mira implementation
|
||||
import util
|
||||
PRINT = True
|
||||
|
||||
class MiraClassifier:
|
||||
"""
|
||||
Mira classifier.
|
||||
|
||||
Note that the variable 'datum' in this code refers to a counter of features
|
||||
(not to a raw samples.Datum).
|
||||
"""
|
||||
def __init__( self, legalLabels, max_iterations):
|
||||
self.legalLabels = legalLabels
|
||||
self.type = "mira"
|
||||
self.automaticTuning = False
|
||||
self.C = 0.001
|
||||
self.legalLabels = legalLabels
|
||||
self.max_iterations = max_iterations
|
||||
self.initializeWeightsToZero()
|
||||
|
||||
def initializeWeightsToZero(self):
|
||||
"Resets the weights of each label to zero vectors"
|
||||
self.weights = {}
|
||||
for label in self.legalLabels:
|
||||
self.weights[label] = util.Counter() # this is the data-structure you should use
|
||||
|
||||
def train(self, trainingData, trainingLabels, validationData, validationLabels):
|
||||
"Outside shell to call your method. Do not modify this method."
|
||||
|
||||
self.features = trainingData[0].keys() # this could be useful for your code later...
|
||||
|
||||
if (self.automaticTuning):
|
||||
Cgrid = [0.002, 0.004, 0.008]
|
||||
else:
|
||||
Cgrid = [self.C]
|
||||
|
||||
return self.trainAndTune(trainingData, trainingLabels, validationData, validationLabels, Cgrid)
|
||||
|
||||
def trainAndTune(self, trainingData, trainingLabels, validationData, validationLabels, Cgrid):
|
||||
"""
|
||||
This method sets self.weights using MIRA. Train the classifier for each value of C in Cgrid,
|
||||
then store the weights that give the best accuracy on the validationData.
|
||||
|
||||
Use the provided self.weights[label] data structure so that
|
||||
the classify method works correctly. Also, recall that a
|
||||
datum is a counter from features to values for those features
|
||||
representing a vector of values.
|
||||
"""
|
||||
"*** YOUR CODE HERE ***"
|
||||
util.raiseNotDefined()
|
||||
|
||||
def classify(self, data ):
|
||||
"""
|
||||
Classifies each datum as the label that most closely matches the prototype vector
|
||||
for that label. See the project description for details.
|
||||
|
||||
Recall that a datum is a util.counter...
|
||||
"""
|
||||
guesses = []
|
||||
for datum in data:
|
||||
vectors = util.Counter()
|
||||
for l in self.legalLabels:
|
||||
vectors[l] = self.weights[l] * datum
|
||||
guesses.append(vectors.argMax())
|
||||
return guesses
|
||||
|
||||
|
40
p5_classification/mostFrequent.py
Normal file
@ -0,0 +1,40 @@
|
||||
# mostFrequent.py
|
||||
# ---------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
import util
|
||||
import classificationMethod
|
||||
|
||||
class MostFrequentClassifier(classificationMethod.ClassificationMethod):
|
||||
"""
|
||||
The MostFrequentClassifier is a very simple classifier: for
|
||||
every test instance presented to it, the classifier returns
|
||||
the label that was seen most often in the training data.
|
||||
"""
|
||||
def __init__(self, legalLabels):
|
||||
self.guess = None
|
||||
self.type = "mostfrequent"
|
||||
|
||||
def train(self, data, labels, validationData, validationLabels):
|
||||
"""
|
||||
Find the most common label in the training data.
|
||||
"""
|
||||
counter = util.Counter()
|
||||
counter.incrementAll(labels, 1)
|
||||
self.guess = counter.argMax()
|
||||
|
||||
def classify(self, testData):
|
||||
"""
|
||||
Classify all test data as the most common label.
|
||||
"""
|
||||
return [self.guess for i in testData]
|
175
p5_classification/naiveBayes.py
Normal file
@ -0,0 +1,175 @@
|
||||
# naiveBayes.py
|
||||
# -------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
import util
|
||||
import classificationMethod
|
||||
import math
|
||||
|
||||
class NaiveBayesClassifier(classificationMethod.ClassificationMethod):
|
||||
"""
|
||||
See the project description for the specifications of the Naive Bayes classifier.
|
||||
|
||||
Note that the variable 'datum' in this code refers to a counter of features
|
||||
(not to a raw samples.Datum).
|
||||
"""
|
||||
def __init__(self, legalLabels):
|
||||
self.legalLabels = legalLabels
|
||||
self.type = "naivebayes"
|
||||
self.k = 1 # this is the smoothing parameter, ** use it in your train method **
|
||||
self.automaticTuning = False # Look at this flag to decide whether to choose k automatically ** use this in your train method **
|
||||
|
||||
def setSmoothing(self, k):
|
||||
"""
|
||||
This is used by the main method to change the smoothing parameter before training.
|
||||
Do not modify this method.
|
||||
"""
|
||||
self.k = k
|
||||
|
||||
def train(self, trainingData, trainingLabels, validationData, validationLabels):
|
||||
"""
|
||||
Outside shell to call your method. Do not modify this method.
|
||||
"""
|
||||
|
||||
# might be useful in your code later...
|
||||
# this is a list of all features in the training set.
|
||||
self.features = list(set([ f for datum in trainingData for f in datum.keys() ]));
|
||||
|
||||
if (self.automaticTuning):
|
||||
kgrid = [0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20, 50]
|
||||
else:
|
||||
kgrid = [self.k]
|
||||
|
||||
self.trainAndTune(trainingData, trainingLabels, validationData, validationLabels, kgrid)
|
||||
|
||||
def trainAndTune(self, trainingData, trainingLabels, validationData, validationLabels, kgrid):
|
||||
"""
|
||||
Trains the classifier by collecting counts over the training data, and
|
||||
stores the Laplace smoothed estimates so that they can be used to classify.
|
||||
Evaluate each value of k in kgrid to choose the smoothing parameter
|
||||
that gives the best accuracy on the held-out validationData.
|
||||
|
||||
trainingData and validationData are lists of feature Counters. The corresponding
|
||||
label lists contain the correct label for each datum.
|
||||
|
||||
To get the list of all possible features or labels, use self.features and
|
||||
self.legalLabels.
|
||||
"""
|
||||
|
||||
bestAccuracyCount = -1 # best accuracy so far on validation set
|
||||
|
||||
# Common training - get all counts from training data
|
||||
# We only do it once - save computation in tuning smoothing parameter
|
||||
commonPrior = util.Counter() # probability over labels
|
||||
commonConditionalProb = util.Counter() # Conditional probability of feature feat being 1
|
||||
# indexed by (feat, label)
|
||||
commonCounts = util.Counter() # how many time I have seen feature feat with label y
|
||||
# whatever inactive or active
|
||||
|
||||
for i in range(len(trainingData)):
|
||||
datum = trainingData[i]
|
||||
label = trainingLabels[i]
|
||||
commonPrior[label] += 1
|
||||
for feat, value in datum.items():
|
||||
commonCounts[(feat,label)] += 1
|
||||
if value > 0: # assume binary value
|
||||
commonConditionalProb[(feat, label)] += 1
|
||||
|
||||
for k in kgrid: # Smoothing parameter tuning loop!
|
||||
prior = util.Counter()
|
||||
conditionalProb = util.Counter()
|
||||
counts = util.Counter()
|
||||
|
||||
# get counts from common training step
|
||||
for key, val in commonPrior.items():
|
||||
prior[key] += val
|
||||
for key, val in commonCounts.items():
|
||||
counts[key] += val
|
||||
for key, val in commonConditionalProb.items():
|
||||
conditionalProb[key] += val
|
||||
|
||||
# smoothing:
|
||||
for label in self.legalLabels:
|
||||
for feat in self.features:
|
||||
conditionalProb[ (feat, label)] += k
|
||||
counts[(feat, label)] += 2*k # 2 because both value 0 and 1 are smoothed
|
||||
|
||||
# normalizing:
|
||||
prior.normalize()
|
||||
for x, count in conditionalProb.items():
|
||||
conditionalProb[x] = count * 1.0 / counts[x]
|
||||
|
||||
self.prior = prior
|
||||
self.conditionalProb = conditionalProb
|
||||
|
||||
# evaluating performance on validation set
|
||||
predictions = self.classify(validationData)
|
||||
accuracyCount = [predictions[i] == validationLabels[i] for i in range(len(validationLabels))].count(True)
|
||||
|
||||
print "Performance on validation set for k=%f: (%.1f%%)" % (k, 100.0*accuracyCount/len(validationLabels))
|
||||
if accuracyCount > bestAccuracyCount:
|
||||
bestParams = (prior, conditionalProb, k)
|
||||
bestAccuracyCount = accuracyCount
|
||||
# end of automatic tuning loop
|
||||
self.prior, self.conditionalProb, self.k = bestParams
|
||||
|
||||
def classify(self, testData):
|
||||
"""
|
||||
Classify the data based on the posterior distribution over labels.
|
||||
|
||||
You shouldn't modify this method.
|
||||
"""
|
||||
guesses = []
|
||||
self.posteriors = [] # Log posteriors are stored for later data analysis (autograder).
|
||||
for datum in testData:
|
||||
posterior = self.calculateLogJointProbabilities(datum)
|
||||
guesses.append(posterior.argMax())
|
||||
self.posteriors.append(posterior)
|
||||
return guesses
|
||||
|
||||
def calculateLogJointProbabilities(self, datum):
|
||||
"""
|
||||
Returns the log-joint distribution over legal labels and the datum.
|
||||
Each log-probability should be stored in the log-joint counter, e.g.
|
||||
logJoint[3] = <Estimate of log( P(Label = 3, datum) )>
|
||||
|
||||
To get the list of all possible features or labels, use self.features and
|
||||
self.legalLabels.
|
||||
"""
|
||||
logJoint = util.Counter()
|
||||
|
||||
for label in self.legalLabels:
|
||||
logJoint[label] = math.log(self.prior[label])
|
||||
for feat, value in datum.items():
|
||||
if value > 0:
|
||||
logJoint[label] += math.log(self.conditionalProb[feat,label])
|
||||
else:
|
||||
logJoint[label] += math.log(1-self.conditionalProb[feat,label])
|
||||
|
||||
return logJoint
|
||||
|
||||
def findHighOddsFeatures(self, label1, label2):
|
||||
"""
|
||||
Returns the 100 best features for the odds ratio:
|
||||
P(feature=1 | label1)/P(feature=1 | label2)
|
||||
|
||||
Note: you may find 'self.features' a useful way to loop through all possible features
|
||||
"""
|
||||
featuresOdds = []
|
||||
|
||||
for feat in self.features:
|
||||
featuresOdds.append((self.conditionalProb[feat, label1]/self.conditionalProb[feat, label2], feat))
|
||||
featuresOdds.sort()
|
||||
featuresOdds = [feat for val, feat in featuresOdds[-100:]]
|
||||
|
||||
return featuresOdds
|
684
p5_classification/pacman.py
Normal file
@ -0,0 +1,684 @@
|
||||
# pacman.py
|
||||
# ---------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
"""
|
||||
Pacman.py holds the logic for the classic pacman game along with the main
|
||||
code to run a game. This file is divided into three sections:
|
||||
|
||||
(i) Your interface to the pacman world:
|
||||
Pacman is a complex environment. You probably don't want to
|
||||
read through all of the code we wrote to make the game runs
|
||||
correctly. This section contains the parts of the code
|
||||
that you will need to understand in order to complete the
|
||||
project. There is also some code in game.py that you should
|
||||
understand.
|
||||
|
||||
(ii) The hidden secrets of pacman:
|
||||
This section contains all of the logic code that the pacman
|
||||
environment uses to decide who can move where, who dies when
|
||||
things collide, etc. You shouldn't need to read this section
|
||||
of code, but you can if you want.
|
||||
|
||||
(iii) Framework to start a game:
|
||||
The final section contains the code for reading the command
|
||||
you use to set up the game, then starting up a new game, along with
|
||||
linking in all the external parts (agent functions, graphics).
|
||||
Check this section out to see all the options available to you.
|
||||
|
||||
To play your first game, type 'python pacman.py' from the command line.
|
||||
The keys are 'a', 's', 'd', and 'w' to move (or arrow keys). Have fun!
|
||||
"""
|
||||
from game import GameStateData
|
||||
from game import Game
|
||||
from game import Directions
|
||||
from game import Actions
|
||||
from util import nearestPoint
|
||||
from util import manhattanDistance
|
||||
import util, layout
|
||||
import sys, types, time, random, os
|
||||
|
||||
###################################################
|
||||
# YOUR INTERFACE TO THE PACMAN WORLD: A GameState #
|
||||
###################################################
|
||||
|
||||
class GameState:
|
||||
"""
|
||||
A GameState specifies the full game state, including the food, capsules,
|
||||
agent configurations and score changes.
|
||||
|
||||
GameStates are used by the Game object to capture the actual state of the game and
|
||||
can be used by agents to reason about the game.
|
||||
|
||||
Much of the information in a GameState is stored in a GameStateData object. We
|
||||
strongly suggest that you access that data via the accessor methods below rather
|
||||
than referring to the GameStateData object directly.
|
||||
|
||||
Note that in classic Pacman, Pacman is always agent 0.
|
||||
"""
|
||||
|
||||
####################################################
|
||||
# Accessor methods: use these to access state data #
|
||||
####################################################
|
||||
|
||||
# static variable keeps track of which states have had getLegalActions called
|
||||
explored = set()
|
||||
def getAndResetExplored():
|
||||
tmp = GameState.explored.copy()
|
||||
GameState.explored = set()
|
||||
return tmp
|
||||
getAndResetExplored = staticmethod(getAndResetExplored)
|
||||
|
||||
def getLegalActions( self, agentIndex=0 ):
|
||||
"""
|
||||
Returns the legal actions for the agent specified.
|
||||
"""
|
||||
# GameState.explored.add(self)
|
||||
if self.isWin() or self.isLose(): return []
|
||||
|
||||
if agentIndex == 0: # Pacman is moving
|
||||
return PacmanRules.getLegalActions( self )
|
||||
else:
|
||||
return GhostRules.getLegalActions( self, agentIndex )
|
||||
|
||||
def generateSuccessor( self, agentIndex, action):
|
||||
"""
|
||||
Returns the successor state after the specified agent takes the action.
|
||||
"""
|
||||
# Check that successors exist
|
||||
if self.isWin() or self.isLose(): raise Exception('Can\'t generate a successor of a terminal state.')
|
||||
|
||||
# Copy current state
|
||||
state = GameState(self)
|
||||
|
||||
# Let agent's logic deal with its action's effects on the board
|
||||
if agentIndex == 0: # Pacman is moving
|
||||
state.data._eaten = [False for i in range(state.getNumAgents())]
|
||||
PacmanRules.applyAction( state, action )
|
||||
else: # A ghost is moving
|
||||
GhostRules.applyAction( state, action, agentIndex )
|
||||
|
||||
# Time passes
|
||||
if agentIndex == 0:
|
||||
state.data.scoreChange += -TIME_PENALTY # Penalty for waiting around
|
||||
else:
|
||||
GhostRules.decrementTimer( state.data.agentStates[agentIndex] )
|
||||
|
||||
# Resolve multi-agent effects
|
||||
GhostRules.checkDeath( state, agentIndex )
|
||||
|
||||
# Book keeping
|
||||
state.data._agentMoved = agentIndex
|
||||
state.data.score += state.data.scoreChange
|
||||
GameState.explored.add(self)
|
||||
GameState.explored.add(state)
|
||||
return state
|
||||
|
||||
def getLegalPacmanActions( self ):
|
||||
return self.getLegalActions( 0 )
|
||||
|
||||
def generatePacmanSuccessor( self, action ):
|
||||
"""
|
||||
Generates the successor state after the specified pacman move
|
||||
"""
|
||||
return self.generateSuccessor( 0, action )
|
||||
|
||||
def getPacmanState( self ):
|
||||
"""
|
||||
Returns an AgentState object for pacman (in game.py)
|
||||
|
||||
state.pos gives the current position
|
||||
state.direction gives the travel vector
|
||||
"""
|
||||
return self.data.agentStates[0].copy()
|
||||
|
||||
def getPacmanPosition( self ):
|
||||
return self.data.agentStates[0].getPosition()
|
||||
|
||||
def getGhostStates( self ):
|
||||
return self.data.agentStates[1:]
|
||||
|
||||
def getGhostState( self, agentIndex ):
|
||||
if agentIndex == 0 or agentIndex >= self.getNumAgents():
|
||||
raise Exception("Invalid index passed to getGhostState")
|
||||
return self.data.agentStates[agentIndex]
|
||||
|
||||
def getGhostPosition( self, agentIndex ):
|
||||
if agentIndex == 0:
|
||||
raise Exception("Pacman's index passed to getGhostPosition")
|
||||
return self.data.agentStates[agentIndex].getPosition()
|
||||
|
||||
def getGhostPositions(self):
|
||||
return [s.getPosition() for s in self.getGhostStates()]
|
||||
|
||||
def getNumAgents( self ):
|
||||
return len( self.data.agentStates )
|
||||
|
||||
def getScore( self ):
|
||||
return float(self.data.score)
|
||||
|
||||
def getCapsules(self):
|
||||
"""
|
||||
Returns a list of positions (x,y) of the remaining capsules.
|
||||
"""
|
||||
return self.data.capsules
|
||||
|
||||
def getNumFood( self ):
|
||||
return self.data.food.count()
|
||||
|
||||
def getFood(self):
|
||||
"""
|
||||
Returns a Grid of boolean food indicator variables.
|
||||
|
||||
Grids can be accessed via list notation, so to check
|
||||
if there is food at (x,y), just call
|
||||
|
||||
currentFood = state.getFood()
|
||||
if currentFood[x][y] == True: ...
|
||||
"""
|
||||
return self.data.food
|
||||
|
||||
def getWalls(self):
|
||||
"""
|
||||
Returns a Grid of boolean wall indicator variables.
|
||||
|
||||
Grids can be accessed via list notation, so to check
|
||||
if there is a wall at (x,y), just call
|
||||
|
||||
walls = state.getWalls()
|
||||
if walls[x][y] == True: ...
|
||||
"""
|
||||
return self.data.layout.walls
|
||||
|
||||
def hasFood(self, x, y):
|
||||
return self.data.food[x][y]
|
||||
|
||||
def hasWall(self, x, y):
|
||||
return self.data.layout.walls[x][y]
|
||||
|
||||
def isLose( self ):
|
||||
return self.data._lose
|
||||
|
||||
def isWin( self ):
|
||||
return self.data._win
|
||||
|
||||
#############################################
|
||||
# Helper methods: #
|
||||
# You shouldn't need to call these directly #
|
||||
#############################################
|
||||
|
||||
def __init__( self, prevState = None ):
|
||||
"""
|
||||
Generates a new state by copying information from its predecessor.
|
||||
"""
|
||||
if prevState != None: # Initial state
|
||||
self.data = GameStateData(prevState.data)
|
||||
else:
|
||||
self.data = GameStateData()
|
||||
|
||||
def deepCopy( self ):
|
||||
state = GameState( self )
|
||||
state.data = self.data.deepCopy()
|
||||
return state
|
||||
|
||||
def __eq__( self, other ):
|
||||
"""
|
||||
Allows two states to be compared.
|
||||
"""
|
||||
return hasattr(other, 'data') and self.data == other.data
|
||||
|
||||
def __hash__( self ):
|
||||
"""
|
||||
Allows states to be keys of dictionaries.
|
||||
"""
|
||||
return hash( self.data )
|
||||
|
||||
def __str__( self ):
|
||||
|
||||
return str(self.data)
|
||||
|
||||
def initialize( self, layout, numGhostAgents=1000 ):
|
||||
"""
|
||||
Creates an initial game state from a layout array (see layout.py).
|
||||
"""
|
||||
self.data.initialize(layout, numGhostAgents)
|
||||
|
||||
############################################################################
|
||||
# THE HIDDEN SECRETS OF PACMAN #
|
||||
# #
|
||||
# You shouldn't need to look through the code in this section of the file. #
|
||||
############################################################################
|
||||
|
||||
SCARED_TIME = 40 # Moves ghosts are scared
|
||||
COLLISION_TOLERANCE = 0.7 # How close ghosts must be to Pacman to kill
|
||||
TIME_PENALTY = 1 # Number of points lost each round
|
||||
|
||||
class ClassicGameRules:
|
||||
"""
|
||||
These game rules manage the control flow of a game, deciding when
|
||||
and how the game starts and ends.
|
||||
"""
|
||||
def __init__(self, timeout=30):
|
||||
self.timeout = timeout
|
||||
|
||||
def newGame( self, layout, pacmanAgent, ghostAgents, display, quiet = False, catchExceptions=False):
|
||||
agents = [pacmanAgent] + ghostAgents[:layout.getNumGhosts()]
|
||||
initState = GameState()
|
||||
initState.initialize( layout, len(ghostAgents) )
|
||||
game = Game(agents, display, self, catchExceptions=catchExceptions)
|
||||
game.state = initState
|
||||
self.initialState = initState.deepCopy()
|
||||
self.quiet = quiet
|
||||
return game
|
||||
|
||||
def process(self, state, game):
|
||||
"""
|
||||
Checks to see whether it is time to end the game.
|
||||
"""
|
||||
if state.isWin(): self.win(state, game)
|
||||
if state.isLose(): self.lose(state, game)
|
||||
|
||||
def win( self, state, game ):
|
||||
if not self.quiet: print "Pacman emerges victorious! Score: %d" % state.data.score
|
||||
game.gameOver = True
|
||||
|
||||
def lose( self, state, game ):
|
||||
if not self.quiet: print "Pacman died! Score: %d" % state.data.score
|
||||
game.gameOver = True
|
||||
|
||||
def getProgress(self, game):
|
||||
return float(game.state.getNumFood()) / self.initialState.getNumFood()
|
||||
|
||||
def agentCrash(self, game, agentIndex):
|
||||
if agentIndex == 0:
|
||||
print "Pacman crashed"
|
||||
else:
|
||||
print "A ghost crashed"
|
||||
|
||||
def getMaxTotalTime(self, agentIndex):
|
||||
return self.timeout
|
||||
|
||||
def getMaxStartupTime(self, agentIndex):
|
||||
return self.timeout
|
||||
|
||||
def getMoveWarningTime(self, agentIndex):
|
||||
return self.timeout
|
||||
|
||||
def getMoveTimeout(self, agentIndex):
|
||||
return self.timeout
|
||||
|
||||
def getMaxTimeWarnings(self, agentIndex):
|
||||
return 0
|
||||
|
||||
class PacmanRules:
|
||||
"""
|
||||
These functions govern how pacman interacts with his environment under
|
||||
the classic game rules.
|
||||
"""
|
||||
PACMAN_SPEED=1
|
||||
|
||||
def getLegalActions( state ):
|
||||
"""
|
||||
Returns a list of possible actions.
|
||||
"""
|
||||
return Actions.getPossibleActions( state.getPacmanState().configuration, state.data.layout.walls )
|
||||
getLegalActions = staticmethod( getLegalActions )
|
||||
|
||||
def applyAction( state, action ):
|
||||
"""
|
||||
Edits the state to reflect the results of the action.
|
||||
"""
|
||||
legal = PacmanRules.getLegalActions( state )
|
||||
if action not in legal:
|
||||
raise Exception("Illegal action " + str(action))
|
||||
|
||||
pacmanState = state.data.agentStates[0]
|
||||
|
||||
# Update Configuration
|
||||
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
|
||||
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
|
||||
|
||||
# Eat
|
||||
next = pacmanState.configuration.getPosition()
|
||||
nearest = nearestPoint( next )
|
||||
if manhattanDistance( nearest, next ) <= 0.5 :
|
||||
# Remove food
|
||||
PacmanRules.consume( nearest, state )
|
||||
applyAction = staticmethod( applyAction )
|
||||
|
||||
def consume( position, state ):
|
||||
x,y = position
|
||||
# Eat food
|
||||
if state.data.food[x][y]:
|
||||
state.data.scoreChange += 10
|
||||
state.data.food = state.data.food.copy()
|
||||
state.data.food[x][y] = False
|
||||
state.data._foodEaten = position
|
||||
# TODO: cache numFood?
|
||||
numFood = state.getNumFood()
|
||||
if numFood == 0 and not state.data._lose:
|
||||
state.data.scoreChange += 500
|
||||
state.data._win = True
|
||||
# Eat capsule
|
||||
if( position in state.getCapsules() ):
|
||||
state.data.capsules.remove( position )
|
||||
state.data._capsuleEaten = position
|
||||
# Reset all ghosts' scared timers
|
||||
for index in range( 1, len( state.data.agentStates ) ):
|
||||
state.data.agentStates[index].scaredTimer = SCARED_TIME
|
||||
consume = staticmethod( consume )
|
||||
|
||||
class GhostRules:
|
||||
"""
|
||||
These functions dictate how ghosts interact with their environment.
|
||||
"""
|
||||
GHOST_SPEED=1.0
|
||||
def getLegalActions( state, ghostIndex ):
|
||||
"""
|
||||
Ghosts cannot stop, and cannot turn around unless they
|
||||
reach a dead end, but can turn 90 degrees at intersections.
|
||||
"""
|
||||
conf = state.getGhostState( ghostIndex ).configuration
|
||||
possibleActions = Actions.getPossibleActions( conf, state.data.layout.walls )
|
||||
reverse = Actions.reverseDirection( conf.direction )
|
||||
if Directions.STOP in possibleActions:
|
||||
possibleActions.remove( Directions.STOP )
|
||||
if reverse in possibleActions and len( possibleActions ) > 1:
|
||||
possibleActions.remove( reverse )
|
||||
return possibleActions
|
||||
getLegalActions = staticmethod( getLegalActions )
|
||||
|
||||
def applyAction( state, action, ghostIndex):
|
||||
|
||||
legal = GhostRules.getLegalActions( state, ghostIndex )
|
||||
if action not in legal:
|
||||
raise Exception("Illegal ghost action " + str(action))
|
||||
|
||||
ghostState = state.data.agentStates[ghostIndex]
|
||||
speed = GhostRules.GHOST_SPEED
|
||||
if ghostState.scaredTimer > 0: speed /= 2.0
|
||||
vector = Actions.directionToVector( action, speed )
|
||||
ghostState.configuration = ghostState.configuration.generateSuccessor( vector )
|
||||
applyAction = staticmethod( applyAction )
|
||||
|
||||
def decrementTimer( ghostState):
|
||||
timer = ghostState.scaredTimer
|
||||
if timer == 1:
|
||||
ghostState.configuration.pos = nearestPoint( ghostState.configuration.pos )
|
||||
ghostState.scaredTimer = max( 0, timer - 1 )
|
||||
decrementTimer = staticmethod( decrementTimer )
|
||||
|
||||
def checkDeath( state, agentIndex):
|
||||
pacmanPosition = state.getPacmanPosition()
|
||||
if agentIndex == 0: # Pacman just moved; Anyone can kill him
|
||||
for index in range( 1, len( state.data.agentStates ) ):
|
||||
ghostState = state.data.agentStates[index]
|
||||
ghostPosition = ghostState.configuration.getPosition()
|
||||
if GhostRules.canKill( pacmanPosition, ghostPosition ):
|
||||
GhostRules.collide( state, ghostState, index )
|
||||
else:
|
||||
ghostState = state.data.agentStates[agentIndex]
|
||||
ghostPosition = ghostState.configuration.getPosition()
|
||||
if GhostRules.canKill( pacmanPosition, ghostPosition ):
|
||||
GhostRules.collide( state, ghostState, agentIndex )
|
||||
checkDeath = staticmethod( checkDeath )
|
||||
|
||||
def collide( state, ghostState, agentIndex):
|
||||
if ghostState.scaredTimer > 0:
|
||||
state.data.scoreChange += 200
|
||||
GhostRules.placeGhost(state, ghostState)
|
||||
ghostState.scaredTimer = 0
|
||||
# Added for first-person
|
||||
state.data._eaten[agentIndex] = True
|
||||
else:
|
||||
if not state.data._win:
|
||||
state.data.scoreChange -= 500
|
||||
state.data._lose = True
|
||||
collide = staticmethod( collide )
|
||||
|
||||
def canKill( pacmanPosition, ghostPosition ):
|
||||
return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE
|
||||
canKill = staticmethod( canKill )
|
||||
|
||||
def placeGhost(state, ghostState):
|
||||
ghostState.configuration = ghostState.start
|
||||
placeGhost = staticmethod( placeGhost )
|
||||
|
||||
#############################
|
||||
# FRAMEWORK TO START A GAME #
|
||||
#############################
|
||||
|
||||
def default(str):
|
||||
return str + ' [Default: %default]'
|
||||
|
||||
def parseAgentArgs(str):
|
||||
if str == None: return {}
|
||||
pieces = str.split(',')
|
||||
opts = {}
|
||||
for p in pieces:
|
||||
if '=' in p:
|
||||
key, val = p.split('=')
|
||||
else:
|
||||
key,val = p, 1
|
||||
opts[key] = val
|
||||
return opts
|
||||
|
||||
def readCommand( argv ):
|
||||
"""
|
||||
Processes the command used to run pacman from the command line.
|
||||
"""
|
||||
from optparse import OptionParser
|
||||
usageStr = """
|
||||
USAGE: python pacman.py <options>
|
||||
EXAMPLES: (1) python pacman.py
|
||||
- starts an interactive game
|
||||
(2) python pacman.py --layout smallClassic --zoom 2
|
||||
OR python pacman.py -l smallClassic -z 2
|
||||
- starts an interactive game on a smaller board, zoomed in
|
||||
"""
|
||||
parser = OptionParser(usageStr)
|
||||
|
||||
parser.add_option('-n', '--numGames', dest='numGames', type='int',
|
||||
help=default('the number of GAMES to play'), metavar='GAMES', default=1)
|
||||
parser.add_option('-l', '--layout', dest='layout',
|
||||
help=default('the LAYOUT_FILE from which to load the map layout'),
|
||||
metavar='LAYOUT_FILE', default='mediumClassic')
|
||||
parser.add_option('-p', '--pacman', dest='pacman',
|
||||
help=default('the agent TYPE in the pacmanAgents module to use'),
|
||||
metavar='TYPE', default='KeyboardAgent')
|
||||
parser.add_option('-t', '--textGraphics', action='store_true', dest='textGraphics',
|
||||
help='Display output as text only', default=False)
|
||||
parser.add_option('-q', '--quietTextGraphics', action='store_true', dest='quietGraphics',
|
||||
help='Generate minimal output and no graphics', default=False)
|
||||
parser.add_option('-g', '--ghosts', dest='ghost',
|
||||
help=default('the ghost agent TYPE in the ghostAgents module to use'),
|
||||
metavar = 'TYPE', default='RandomGhost')
|
||||
parser.add_option('-k', '--numghosts', type='int', dest='numGhosts',
|
||||
help=default('The maximum number of ghosts to use'), default=4)
|
||||
parser.add_option('-z', '--zoom', type='float', dest='zoom',
|
||||
help=default('Zoom the size of the graphics window'), default=1.0)
|
||||
parser.add_option('-f', '--fixRandomSeed', action='store_true', dest='fixRandomSeed',
|
||||
help='Fixes the random seed to always play the same game', default=False)
|
||||
parser.add_option('-r', '--recordActions', action='store_true', dest='record',
|
||||
help='Writes game histories to a file (named by the time they were played)', default=False)
|
||||
parser.add_option('--replay', dest='gameToReplay',
|
||||
help='A recorded game file (pickle) to replay', default=None)
|
||||
parser.add_option('-a','--agentArgs',dest='agentArgs',
|
||||
help='Comma separated values sent to agent. e.g. "opt1=val1,opt2,opt3=val3"')
|
||||
parser.add_option('-x', '--numTraining', dest='numTraining', type='int',
|
||||
help=default('How many episodes are training (suppresses output)'), default=0)
|
||||
parser.add_option('--frameTime', dest='frameTime', type='float',
|
||||
help=default('Time to delay between frames; <0 means keyboard'), default=0.1)
|
||||
parser.add_option('-c', '--catchExceptions', action='store_true', dest='catchExceptions',
|
||||
help='Turns on exception handling and timeouts during games', default=False)
|
||||
parser.add_option('--timeout', dest='timeout', type='int',
|
||||
help=default('Maximum length of time an agent can spend computing in a single game'), default=30)
|
||||
|
||||
options, otherjunk = parser.parse_args(argv)
|
||||
if len(otherjunk) != 0:
|
||||
raise Exception('Command line input not understood: ' + str(otherjunk))
|
||||
args = dict()
|
||||
|
||||
# Fix the random seed
|
||||
if options.fixRandomSeed: random.seed('cs188')
|
||||
|
||||
# Choose a layout
|
||||
args['layout'] = layout.getLayout( options.layout )
|
||||
if args['layout'] == None: raise Exception("The layout " + options.layout + " cannot be found")
|
||||
|
||||
# Choose a Pacman agent
|
||||
noKeyboard = options.gameToReplay == None and (options.textGraphics or options.quietGraphics)
|
||||
pacmanType = loadAgent(options.pacman, noKeyboard)
|
||||
agentOpts = parseAgentArgs(options.agentArgs)
|
||||
if options.numTraining > 0:
|
||||
args['numTraining'] = options.numTraining
|
||||
if 'numTraining' not in agentOpts: agentOpts['numTraining'] = options.numTraining
|
||||
pacman = pacmanType(**agentOpts) # Instantiate Pacman with agentArgs
|
||||
args['pacman'] = pacman
|
||||
|
||||
# Don't display training games
|
||||
if 'numTrain' in agentOpts:
|
||||
options.numQuiet = int(agentOpts['numTrain'])
|
||||
options.numIgnore = int(agentOpts['numTrain'])
|
||||
|
||||
# Choose a ghost agent
|
||||
ghostType = loadAgent(options.ghost, noKeyboard)
|
||||
args['ghosts'] = [ghostType( i+1 ) for i in range( options.numGhosts )]
|
||||
|
||||
# Choose a display format
|
||||
if options.quietGraphics:
|
||||
import textDisplay
|
||||
args['display'] = textDisplay.NullGraphics()
|
||||
elif options.textGraphics:
|
||||
import textDisplay
|
||||
textDisplay.SLEEP_TIME = options.frameTime
|
||||
args['display'] = textDisplay.PacmanGraphics()
|
||||
else:
|
||||
import graphicsDisplay
|
||||
args['display'] = graphicsDisplay.PacmanGraphics(options.zoom, frameTime = options.frameTime)
|
||||
args['numGames'] = options.numGames
|
||||
args['record'] = options.record
|
||||
args['catchExceptions'] = options.catchExceptions
|
||||
args['timeout'] = options.timeout
|
||||
|
||||
# Special case: recorded games don't use the runGames method or args structure
|
||||
if options.gameToReplay != None:
|
||||
print 'Replaying recorded game %s.' % options.gameToReplay
|
||||
import cPickle
|
||||
f = open(options.gameToReplay)
|
||||
try: recorded = cPickle.load(f)
|
||||
finally: f.close()
|
||||
recorded['display'] = args['display']
|
||||
replayGame(**recorded)
|
||||
sys.exit(0)
|
||||
|
||||
return args
|
||||
|
||||
def loadAgent(pacman, nographics):
|
||||
# Looks through all pythonPath Directories for the right module,
|
||||
pythonPathStr = os.path.expandvars("$PYTHONPATH")
|
||||
if pythonPathStr.find(';') == -1:
|
||||
pythonPathDirs = pythonPathStr.split(':')
|
||||
else:
|
||||
pythonPathDirs = pythonPathStr.split(';')
|
||||
pythonPathDirs.append('.')
|
||||
|
||||
for moduleDir in pythonPathDirs:
|
||||
if not os.path.isdir(moduleDir): continue
|
||||
moduleNames = [f for f in os.listdir(moduleDir) if f.endswith('gents.py')]
|
||||
for modulename in moduleNames:
|
||||
try:
|
||||
module = __import__(modulename[:-3])
|
||||
except ImportError:
|
||||
continue
|
||||
if pacman in dir(module):
|
||||
if nographics and modulename == 'keyboardAgents.py':
|
||||
raise Exception('Using the keyboard requires graphics (not text display)')
|
||||
return getattr(module, pacman)
|
||||
raise Exception('The agent ' + pacman + ' is not specified in any *Agents.py.')
|
||||
|
||||
def replayGame( layout, actions, display ):
|
||||
import pacmanAgents, ghostAgents
|
||||
rules = ClassicGameRules()
|
||||
agents = [pacmanAgents.GreedyAgent()] + [ghostAgents.RandomGhost(i+1) for i in range(layout.getNumGhosts())]
|
||||
game = rules.newGame( layout, agents[0], agents[1:], display )
|
||||
state = game.state
|
||||
display.initialize(state.data)
|
||||
|
||||
for action in actions:
|
||||
# Execute the action
|
||||
state = state.generateSuccessor( *action )
|
||||
# Change the display
|
||||
display.update( state.data )
|
||||
# Allow for game specific conditions (winning, losing, etc.)
|
||||
rules.process(state, game)
|
||||
|
||||
display.finish()
|
||||
|
||||
def runGames( layout, pacman, ghosts, display, numGames, record, numTraining = 0, catchExceptions=False, timeout=30 ):
|
||||
import __main__
|
||||
__main__.__dict__['_display'] = display
|
||||
|
||||
rules = ClassicGameRules(timeout)
|
||||
games = []
|
||||
|
||||
for i in range( numGames ):
|
||||
beQuiet = i < numTraining
|
||||
if beQuiet:
|
||||
# Suppress output and graphics
|
||||
import textDisplay
|
||||
gameDisplay = textDisplay.NullGraphics()
|
||||
rules.quiet = True
|
||||
else:
|
||||
gameDisplay = display
|
||||
rules.quiet = False
|
||||
game = rules.newGame( layout, pacman, ghosts, gameDisplay, beQuiet, catchExceptions)
|
||||
game.run()
|
||||
if not beQuiet: games.append(game)
|
||||
|
||||
if record:
|
||||
import time, cPickle
|
||||
fname = ('recorded-game-%d' % (i + 1)) + '-'.join([str(t) for t in time.localtime()[1:6]])
|
||||
f = file(fname, 'w')
|
||||
components = {'layout': layout, 'actions': game.moveHistory}
|
||||
cPickle.dump(components, f)
|
||||
f.close()
|
||||
|
||||
if (numGames-numTraining) > 0:
|
||||
scores = [game.state.getScore() for game in games]
|
||||
wins = [game.state.isWin() for game in games]
|
||||
winRate = wins.count(True)/ float(len(wins))
|
||||
print 'Average Score:', sum(scores) / float(len(scores))
|
||||
print 'Scores: ', ', '.join([str(score) for score in scores])
|
||||
print 'Win Rate: %d/%d (%.2f)' % (wins.count(True), len(wins), winRate)
|
||||
print 'Record: ', ', '.join([ ['Loss', 'Win'][int(w)] for w in wins])
|
||||
|
||||
return games
|
||||
|
||||
if __name__ == '__main__':
|
||||
"""
|
||||
The main function called when pacman.py is run
|
||||
from the command line:
|
||||
|
||||
> python pacman.py
|
||||
|
||||
See the usage string for more details.
|
||||
|
||||
> python pacman.py --help
|
||||
"""
|
||||
args = readCommand( sys.argv[1:] ) # Get game components based on input
|
||||
runGames( **args )
|
||||
|
||||
# import cProfile
|
||||
# cProfile.run("runGames( **args )")
|
||||
pass
|
52
p5_classification/pacmanAgents.py
Normal file
@ -0,0 +1,52 @@
|
||||
# pacmanAgents.py
|
||||
# ---------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from pacman import Directions
|
||||
from game import Agent
|
||||
import random
|
||||
import game
|
||||
import util
|
||||
|
||||
class LeftTurnAgent(game.Agent):
|
||||
"An agent that turns left at every opportunity"
|
||||
|
||||
def getAction(self, state):
|
||||
legal = state.getLegalPacmanActions()
|
||||
current = state.getPacmanState().configuration.direction
|
||||
if current == Directions.STOP: current = Directions.NORTH
|
||||
left = Directions.LEFT[current]
|
||||
if left in legal: return left
|
||||
if current in legal: return current
|
||||
if Directions.RIGHT[current] in legal: return Directions.RIGHT[current]
|
||||
if Directions.LEFT[left] in legal: return Directions.LEFT[left]
|
||||
return Directions.STOP
|
||||
|
||||
class GreedyAgent(Agent):
|
||||
def __init__(self, evalFn="scoreEvaluation"):
|
||||
self.evaluationFunction = util.lookup(evalFn, globals())
|
||||
assert self.evaluationFunction != None
|
||||
|
||||
def getAction(self, state):
|
||||
# Generate candidate actions
|
||||
legal = state.getLegalPacmanActions()
|
||||
if Directions.STOP in legal: legal.remove(Directions.STOP)
|
||||
|
||||
successors = [(state.generateSuccessor(0, action), action) for action in legal]
|
||||
scored = [(self.evaluationFunction(state), action) for state, action in successors]
|
||||
bestScore = max(scored)[0]
|
||||
bestActions = [pair[1] for pair in scored if pair[0] == bestScore]
|
||||
return random.choice(bestActions)
|
||||
|
||||
def scoreEvaluation(state):
|
||||
return state.getScore()
|
373463
p5_classification/pacmandata/contest_test.pkl
Normal file
1969518
p5_classification/pacmandata/contest_training.pkl
Normal file
406582
p5_classification/pacmandata/contest_validation.pkl
Normal file
128346
p5_classification/pacmandata/food_test.pkl
Normal file
259524
p5_classification/pacmandata/food_training.pkl
Normal file
116686
p5_classification/pacmandata/food_validation.pkl
Normal file
102756
p5_classification/pacmandata/stop_test.pkl
Normal file
122149
p5_classification/pacmandata/stop_training.pkl
Normal file
65184
p5_classification/pacmandata/stop_validation.pkl
Normal file
37184
p5_classification/pacmandata/suicide_test.pkl
Normal file
84007
p5_classification/pacmandata/suicide_training.pkl
Normal file
105325
p5_classification/pacmandata/suicide_validation.pkl
Normal file
85
p5_classification/perceptron.py
Normal file
@ -0,0 +1,85 @@
|
||||
# perceptron.py
|
||||
# -------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
# Perceptron implementation
|
||||
import util
|
||||
PRINT = True
|
||||
|
||||
class PerceptronClassifier:
|
||||
"""
|
||||
Perceptron classifier.
|
||||
|
||||
Note that the variable 'datum' in this code refers to a counter of features
|
||||
(not to a raw samples.Datum).
|
||||
"""
|
||||
def __init__( self, legalLabels, max_iterations):
|
||||
self.legalLabels = legalLabels
|
||||
self.type = "perceptron"
|
||||
self.max_iterations = max_iterations
|
||||
self.weights = {}
|
||||
for label in legalLabels:
|
||||
self.weights[label] = util.Counter() # this is the data-structure you should use
|
||||
|
||||
def setWeights(self, weights):
|
||||
assert len(weights) == len(self.legalLabels);
|
||||
self.weights = weights;
|
||||
|
||||
def train( self, trainingData, trainingLabels, validationData, validationLabels ):
|
||||
"""
|
||||
The training loop for the perceptron passes through the training data several
|
||||
times and updates the weight vector for each label based on classification errors.
|
||||
See the project description for details.
|
||||
|
||||
Use the provided self.weights[label] data structure so that
|
||||
the classify method works correctly. Also, recall that a
|
||||
datum is a counter from features to values for those features
|
||||
(and thus represents a vector a values).
|
||||
"""
|
||||
|
||||
self.features = trainingData[0].keys() # could be useful later
|
||||
# DO NOT ZERO OUT YOUR WEIGHTS BEFORE STARTING TRAINING, OR
|
||||
# THE AUTOGRADER WILL LIKELY DEDUCT POINTS.
|
||||
|
||||
for iteration in range(self.max_iterations):
|
||||
print "Starting iteration ", iteration, "..."
|
||||
for i in range(len(trainingData)):
|
||||
"*** YOUR CODE HERE ***"
|
||||
util.raiseNotDefined()
|
||||
|
||||
def classify(self, data ):
|
||||
"""
|
||||
Classifies each datum as the label that most closely matches the prototype vector
|
||||
for that label. See the project description for details.
|
||||
|
||||
Recall that a datum is a util.counter...
|
||||
"""
|
||||
guesses = []
|
||||
for datum in data:
|
||||
vectors = util.Counter()
|
||||
for l in self.legalLabels:
|
||||
vectors[l] = self.weights[l] * datum
|
||||
guesses.append(vectors.argMax())
|
||||
return guesses
|
||||
|
||||
|
||||
def findHighWeightFeatures(self, label):
|
||||
"""
|
||||
Returns a list of the 100 features with the greatest weight for some label
|
||||
"""
|
||||
featuresWeights = []
|
||||
|
||||
"*** YOUR CODE HERE ***"
|
||||
util.raiseNotDefined()
|
||||
|
||||
return featuresWeights
|
53
p5_classification/perceptron_pacman.py
Normal file
@ -0,0 +1,53 @@
|
||||
# perceptron_pacman.py
|
||||
# --------------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
# Perceptron implementation for apprenticeship learning
|
||||
import util
|
||||
from perceptron import PerceptronClassifier
|
||||
from pacman import GameState
|
||||
|
||||
PRINT = True
|
||||
|
||||
|
||||
class PerceptronClassifierPacman(PerceptronClassifier):
|
||||
def __init__(self, legalLabels, maxIterations):
|
||||
PerceptronClassifier.__init__(self, legalLabels, maxIterations)
|
||||
self.weights = util.Counter()
|
||||
|
||||
def classify(self, data ):
|
||||
"""
|
||||
Data contains a list of (datum, legal moves)
|
||||
|
||||
Datum is a Counter representing the features of each GameState.
|
||||
legalMoves is a list of legal moves for that GameState.
|
||||
"""
|
||||
guesses = []
|
||||
for datum, legalMoves in data:
|
||||
vectors = util.Counter()
|
||||
for l in legalMoves:
|
||||
vectors[l] = self.weights * datum[l] #changed from datum to datum[l]
|
||||
guesses.append(vectors.argMax())
|
||||
return guesses
|
||||
|
||||
|
||||
def train( self, trainingData, trainingLabels, validationData, validationLabels ):
|
||||
self.features = trainingData[0][0]['Stop'].keys() # could be useful later
|
||||
# DO NOT ZERO OUT YOUR WEIGHTS BEFORE STARTING TRAINING, OR
|
||||
# THE AUTOGRADER WILL LIKELY DEDUCT POINTS.
|
||||
|
||||
for iteration in range(self.max_iterations):
|
||||
print "Starting iteration ", iteration, "..."
|
||||
for i in range(len(trainingData)):
|
||||
"*** YOUR CODE HERE ***"
|
||||
util.raiseNotDefined()
|
18
p5_classification/projectParams.py
Normal file
@ -0,0 +1,18 @@
|
||||
# projectParams.py
|
||||
# ----------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
STUDENT_CODE_DEFAULT = 'naiveBayes.py,perceptron.py,mira.py,dataClassifier.py,answers.py,perceptron_pacman.py'
|
||||
PROJECT_TEST_CLASSES = 'classificationTestClasses.py'
|
||||
PROJECT_NAME = 'Project 5: Classification'
|
||||
BONUS_PIC = False
|
213
p5_classification/samples.py
Normal file
@ -0,0 +1,213 @@
|
||||
# samples.py
|
||||
# ----------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
import util
|
||||
|
||||
## Constants
|
||||
DATUM_WIDTH = 0 # in pixels
|
||||
DATUM_HEIGHT = 0 # in pixels
|
||||
|
||||
## Module Classes
|
||||
|
||||
class Datum:
|
||||
"""
|
||||
A datum is a pixel-level encoding of digits or face/non-face edge maps.
|
||||
|
||||
Digits are from the MNIST dataset and face images are from the
|
||||
easy-faces and background categories of the Caltech 101 dataset.
|
||||
|
||||
|
||||
Each digit is 28x28 pixels, and each face/non-face image is 60x74
|
||||
pixels, each pixel can take the following values:
|
||||
0: no edge (blank)
|
||||
1: gray pixel (+) [used for digits only]
|
||||
2: edge [for face] or black pixel [for digit] (#)
|
||||
|
||||
Pixel data is stored in the 2-dimensional array pixels, which
|
||||
maps to pixels on a plane according to standard euclidean axes
|
||||
with the first dimension denoting the horizontal and the second
|
||||
the vertical coordinate:
|
||||
|
||||
28 # # # # # #
|
||||
27 # # # # # #
|
||||
.
|
||||
.
|
||||
.
|
||||
3 # # + # # #
|
||||
2 # # # # # #
|
||||
1 # # # # # #
|
||||
0 # # # # # #
|
||||
0 1 2 3 ... 27 28
|
||||
|
||||
For example, the + in the above diagram is stored in pixels[2][3], or
|
||||
more generally pixels[column][row].
|
||||
|
||||
The contents of the representation can be accessed directly
|
||||
via the getPixel and getPixels methods.
|
||||
"""
|
||||
def __init__(self, data,width,height):
|
||||
"""
|
||||
Create a new datum from file input (standard MNIST encoding).
|
||||
"""
|
||||
DATUM_HEIGHT = height
|
||||
DATUM_WIDTH=width
|
||||
self.height = DATUM_HEIGHT
|
||||
self.width = DATUM_WIDTH
|
||||
if data == None:
|
||||
data = [[' ' for i in range(DATUM_WIDTH)] for j in range(DATUM_HEIGHT)]
|
||||
self.pixels = util.arrayInvert(convertToInteger(data))
|
||||
|
||||
def getPixel(self, column, row):
|
||||
"""
|
||||
Returns the value of the pixel at column, row as 0, or 1.
|
||||
"""
|
||||
return self.pixels[column][row]
|
||||
|
||||
def getPixels(self):
|
||||
"""
|
||||
Returns all pixels as a list of lists.
|
||||
"""
|
||||
return self.pixels
|
||||
|
||||
def getAsciiString(self):
|
||||
"""
|
||||
Renders the data item as an ascii image.
|
||||
"""
|
||||
rows = []
|
||||
data = util.arrayInvert(self.pixels)
|
||||
for row in data:
|
||||
ascii = map(asciiGrayscaleConversionFunction, row)
|
||||
rows.append( "".join(ascii) )
|
||||
return "\n".join(rows)
|
||||
|
||||
def __str__(self):
|
||||
return self.getAsciiString()
|
||||
|
||||
|
||||
|
||||
# Data processing, cleanup and display functions
|
||||
|
||||
def loadDataFile(filename, n,width,height):
|
||||
"""
|
||||
Reads n data images from a file and returns a list of Datum objects.
|
||||
|
||||
(Return less then n items if the end of file is encountered).
|
||||
"""
|
||||
DATUM_WIDTH=width
|
||||
DATUM_HEIGHT=height
|
||||
fin = readlines(filename)
|
||||
fin.reverse()
|
||||
items = []
|
||||
for i in range(n):
|
||||
data = []
|
||||
for j in range(height):
|
||||
data.append(list(fin.pop()))
|
||||
if len(data[0]) < DATUM_WIDTH-1:
|
||||
# we encountered end of file...
|
||||
print "Truncating at %d examples (maximum)" % i
|
||||
break
|
||||
items.append(Datum(data,DATUM_WIDTH,DATUM_HEIGHT))
|
||||
return items
|
||||
|
||||
import zipfile
|
||||
import os
|
||||
def readlines(filename):
|
||||
"Opens a file or reads it from the zip archive data.zip"
|
||||
if(os.path.exists(filename)):
|
||||
return [l[:-1] for l in open(filename).readlines()]
|
||||
else:
|
||||
z = zipfile.ZipFile('data.zip')
|
||||
return z.read(filename).split('\n')
|
||||
|
||||
def loadLabelsFile(filename, n):
|
||||
"""
|
||||
Reads n labels from a file and returns a list of integers.
|
||||
"""
|
||||
fin = readlines(filename)
|
||||
labels = []
|
||||
for line in fin[:min(n, len(fin))]:
|
||||
if line == '':
|
||||
break
|
||||
labels.append(int(line))
|
||||
return labels
|
||||
|
||||
def loadPacmanStatesFile(filename, n):
|
||||
f = open(filename, 'r')
|
||||
result = cPickle.load(f)
|
||||
f.close()
|
||||
return result
|
||||
|
||||
import cPickle
|
||||
import pacmanAgents
|
||||
import ghostAgents
|
||||
import textDisplay
|
||||
from pacman import ClassicGameRules, GameState
|
||||
def loadPacmanData(filename, n):
|
||||
"""
|
||||
Return game states from specified recorded games as data, and actions taken as labels
|
||||
"""
|
||||
components = loadPacmanStatesFile(filename, n)
|
||||
return components['states'][:n], components['actions'][:n]
|
||||
|
||||
def asciiGrayscaleConversionFunction(value):
|
||||
"""
|
||||
Helper function for display purposes.
|
||||
"""
|
||||
if(value == 0):
|
||||
return ' '
|
||||
elif(value == 1):
|
||||
return '+'
|
||||
elif(value == 2):
|
||||
return '#'
|
||||
|
||||
def IntegerConversionFunction(character):
|
||||
"""
|
||||
Helper function for file reading.
|
||||
"""
|
||||
if(character == ' '):
|
||||
return 0
|
||||
elif(character == '+'):
|
||||
return 1
|
||||
elif(character == '#'):
|
||||
return 2
|
||||
|
||||
def convertToInteger(data):
|
||||
"""
|
||||
Helper function for file reading.
|
||||
"""
|
||||
if type(data) != type([]):
|
||||
return IntegerConversionFunction(data)
|
||||
else:
|
||||
return map(convertToInteger, data)
|
||||
|
||||
# Testing
|
||||
|
||||
def _test():
|
||||
import doctest
|
||||
doctest.testmod() # Test the interactive sessions in function comments
|
||||
n = 1
|
||||
# items = loadDataFile("facedata/facedatatrain", n,60,70)
|
||||
# labels = loadLabelsFile("facedata/facedatatrainlabels", n)
|
||||
items = loadDataFile("digitdata/trainingimages", n,28,28)
|
||||
labels = loadLabelsFile("digitdata/traininglabels", n)
|
||||
for i in range(1):
|
||||
print items[i]
|
||||
print items[i]
|
||||
print (items[i].height)
|
||||
print (items[i].width)
|
||||
print dir(items[i])
|
||||
print items[i].getPixels()
|
||||
|
||||
if __name__ == "__main__":
|
||||
_test()
|
189
p5_classification/testClasses.py
Normal file
@ -0,0 +1,189 @@
|
||||
# testClasses.py
|
||||
# --------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
# import modules from python standard library
|
||||
import inspect
|
||||
import re
|
||||
import sys
|
||||
|
||||
|
||||
# Class which models a question in a project. Note that questions have a
|
||||
# maximum number of points they are worth, and are composed of a series of
|
||||
# test cases
|
||||
class Question(object):
|
||||
|
||||
def raiseNotDefined(self):
|
||||
print 'Method not implemented: %s' % inspect.stack()[1][3]
|
||||
sys.exit(1)
|
||||
|
||||
def __init__(self, questionDict, display):
|
||||
self.maxPoints = int(questionDict['max_points'])
|
||||
self.testCases = []
|
||||
self.display = display
|
||||
|
||||
def getDisplay(self):
|
||||
return self.display
|
||||
|
||||
def getMaxPoints(self):
|
||||
return self.maxPoints
|
||||
|
||||
# Note that 'thunk' must be a function which accepts a single argument,
|
||||
# namely a 'grading' object
|
||||
def addTestCase(self, testCase, thunk):
|
||||
self.testCases.append((testCase, thunk))
|
||||
|
||||
def execute(self, grades):
|
||||
self.raiseNotDefined()
|
||||
|
||||
# Question in which all test cases must be passed in order to receive credit
|
||||
class PassAllTestsQuestion(Question):
|
||||
|
||||
def execute(self, grades):
|
||||
# TODO: is this the right way to use grades? The autograder doesn't seem to use it.
|
||||
testsFailed = False
|
||||
grades.assignZeroCredit()
|
||||
for _, f in self.testCases:
|
||||
if not f(grades):
|
||||
testsFailed = True
|
||||
if testsFailed:
|
||||
grades.fail("Tests failed.")
|
||||
else:
|
||||
grades.assignFullCredit()
|
||||
|
||||
|
||||
# Question in which predict credit is given for test cases with a ``points'' property.
|
||||
# All other tests are mandatory and must be passed.
|
||||
class HackedPartialCreditQuestion(Question):
|
||||
|
||||
def execute(self, grades):
|
||||
# TODO: is this the right way to use grades? The autograder doesn't seem to use it.
|
||||
grades.assignZeroCredit()
|
||||
|
||||
points = 0
|
||||
passed = True
|
||||
for testCase, f in self.testCases:
|
||||
testResult = f(grades)
|
||||
if "points" in testCase.testDict:
|
||||
if testResult: points += float(testCase.testDict["points"])
|
||||
else:
|
||||
passed = passed and testResult
|
||||
|
||||
## FIXME: Below terrible hack to match q3's logic
|
||||
if int(points) == self.maxPoints and not passed:
|
||||
grades.assignZeroCredit()
|
||||
else:
|
||||
grades.addPoints(int(points))
|
||||
|
||||
|
||||
class Q6PartialCreditQuestion(Question):
|
||||
"""Fails any test which returns False, otherwise doesn't effect the grades object.
|
||||
Partial credit tests will add the required points."""
|
||||
|
||||
def execute(self, grades):
|
||||
grades.assignZeroCredit()
|
||||
|
||||
results = []
|
||||
for _, f in self.testCases:
|
||||
results.append(f(grades))
|
||||
if False in results:
|
||||
grades.assignZeroCredit()
|
||||
|
||||
class PartialCreditQuestion(Question):
|
||||
"""Fails any test which returns False, otherwise doesn't effect the grades object.
|
||||
Partial credit tests will add the required points."""
|
||||
|
||||
def execute(self, grades):
|
||||
grades.assignZeroCredit()
|
||||
|
||||
for _, f in self.testCases:
|
||||
if not f(grades):
|
||||
grades.assignZeroCredit()
|
||||
grades.fail("Tests failed.")
|
||||
return False
|
||||
|
||||
|
||||
|
||||
class NumberPassedQuestion(Question):
|
||||
"""Grade is the number of test cases passed."""
|
||||
|
||||
def execute(self, grades):
|
||||
grades.addPoints([f(grades) for _, f in self.testCases].count(True))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# Template modeling a generic test case
|
||||
class TestCase(object):
|
||||
|
||||
def raiseNotDefined(self):
|
||||
print 'Method not implemented: %s' % inspect.stack()[1][3]
|
||||
sys.exit(1)
|
||||
|
||||
def getPath(self):
|
||||
return self.path
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
self.question = question
|
||||
self.testDict = testDict
|
||||
self.path = testDict['path']
|
||||
self.messages = []
|
||||
|
||||
def __str__(self):
|
||||
self.raiseNotDefined()
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
self.raiseNotDefined()
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
self.raiseNotDefined()
|
||||
return True
|
||||
|
||||
# Tests should call the following messages for grading
|
||||
# to ensure a uniform format for test output.
|
||||
#
|
||||
# TODO: this is hairy, but we need to fix grading.py's interface
|
||||
# to get a nice hierarchical project - question - test structure,
|
||||
# then these should be moved into Question proper.
|
||||
def testPass(self, grades):
|
||||
grades.addMessage('PASS: %s' % (self.path,))
|
||||
for line in self.messages:
|
||||
grades.addMessage(' %s' % (line,))
|
||||
return True
|
||||
|
||||
def testFail(self, grades):
|
||||
grades.addMessage('FAIL: %s' % (self.path,))
|
||||
for line in self.messages:
|
||||
grades.addMessage(' %s' % (line,))
|
||||
return False
|
||||
|
||||
# This should really be question level?
|
||||
#
|
||||
def testPartial(self, grades, points, maxPoints):
|
||||
grades.addPoints(points)
|
||||
extraCredit = max(0, points - maxPoints)
|
||||
regularCredit = points - extraCredit
|
||||
|
||||
grades.addMessage('%s: %s (%s of %s points)' % ("PASS" if points >= maxPoints else "FAIL", self.path, regularCredit, maxPoints))
|
||||
if extraCredit > 0:
|
||||
grades.addMessage('EXTRA CREDIT: %s points' % (extraCredit,))
|
||||
|
||||
for line in self.messages:
|
||||
grades.addMessage(' %s' % (line,))
|
||||
|
||||
return True
|
||||
|
||||
def addMessage(self, message):
|
||||
self.messages.extend(message.split('\n'))
|
||||
|
85
p5_classification/testParser.py
Normal file
@ -0,0 +1,85 @@
|
||||
# testParser.py
|
||||
# -------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
import re
|
||||
import sys
|
||||
|
||||
class TestParser(object):
|
||||
|
||||
def __init__(self, path):
|
||||
# save the path to the test file
|
||||
self.path = path
|
||||
|
||||
def removeComments(self, rawlines):
|
||||
# remove any portion of a line following a '#' symbol
|
||||
fixed_lines = []
|
||||
for l in rawlines:
|
||||
idx = l.find('#')
|
||||
if idx == -1:
|
||||
fixed_lines.append(l)
|
||||
else:
|
||||
fixed_lines.append(l[0:idx])
|
||||
return '\n'.join(fixed_lines)
|
||||
|
||||
def parse(self):
|
||||
# read in the test case and remove comments
|
||||
test = {}
|
||||
with open(self.path) as handle:
|
||||
raw_lines = handle.read().split('\n')
|
||||
|
||||
test_text = self.removeComments(raw_lines)
|
||||
test['__raw_lines__'] = raw_lines
|
||||
test['path'] = self.path
|
||||
test['__emit__'] = []
|
||||
lines = test_text.split('\n')
|
||||
i = 0
|
||||
# read a property in each loop cycle
|
||||
while(i < len(lines)):
|
||||
# skip blank lines
|
||||
if re.match('\A\s*\Z', lines[i]):
|
||||
test['__emit__'].append(("raw", raw_lines[i]))
|
||||
i += 1
|
||||
continue
|
||||
m = re.match('\A([^"]*?):\s*"([^"]*)"\s*\Z', lines[i])
|
||||
if m:
|
||||
test[m.group(1)] = m.group(2)
|
||||
test['__emit__'].append(("oneline", m.group(1)))
|
||||
i += 1
|
||||
continue
|
||||
m = re.match('\A([^"]*?):\s*"""\s*\Z', lines[i])
|
||||
if m:
|
||||
msg = []
|
||||
i += 1
|
||||
while(not re.match('\A\s*"""\s*\Z', lines[i])):
|
||||
msg.append(raw_lines[i])
|
||||
i += 1
|
||||
test[m.group(1)] = '\n'.join(msg)
|
||||
test['__emit__'].append(("multiline", m.group(1)))
|
||||
i += 1
|
||||
continue
|
||||
print 'error parsing test file: %s' % self.path
|
||||
sys.exit(1)
|
||||
return test
|
||||
|
||||
|
||||
def emitTestDict(testDict, handle):
|
||||
for kind, data in testDict['__emit__']:
|
||||
if kind == "raw":
|
||||
handle.write(data + "\n")
|
||||
elif kind == "oneline":
|
||||
handle.write('%s: "%s"\n' % (data, testDict[data]))
|
||||
elif kind == "multiline":
|
||||
handle.write('%s: """\n%s\n"""\n' % (data, testDict[data]))
|
||||
else:
|
||||
raise Exception("Bad __emit__")
|
1
p5_classification/test_cases/CONFIG
Normal file
@ -0,0 +1 @@
|
||||
order: "q1 q2 q3 q4 q5 q6"
|
2
p5_classification/test_cases/q1/CONFIG
Normal file
@ -0,0 +1,2 @@
|
||||
max_points: "4"
|
||||
class: "PartialCreditQuestion"
|
1
p5_classification/test_cases/q1/grade.solution
Normal file
@ -0,0 +1 @@
|
||||
# This is the solution file for test_cases/q1/grade.test.
|
14
p5_classification/test_cases/q1/grade.test
Normal file
@ -0,0 +1,14 @@
|
||||
class: "GradeClassifierTest"
|
||||
classifierModule: "perceptron"
|
||||
classifierClass: "PerceptronClassifier"
|
||||
|
||||
max_iterations: "4"
|
||||
|
||||
datasetName: "bigDigitData"
|
||||
|
||||
# our solution: 75%
|
||||
exactOutput: "False"
|
||||
accuracyScale: "4"
|
||||
accuracyThresholds: "70"
|
||||
|
||||
|
2
p5_classification/test_cases/q2/CONFIG
Normal file
@ -0,0 +1,2 @@
|
||||
max_points: "1"
|
||||
class: "PassAllTestsQuestion"
|
2
p5_classification/test_cases/q2/grade.solution
Normal file
@ -0,0 +1,2 @@
|
||||
# This is the solution file for test_cases/q2/grade.test.
|
||||
# File intentionally blank.
|
6
p5_classification/test_cases/q2/grade.test
Normal file
@ -0,0 +1,6 @@
|
||||
class: "MultipleChoiceTest"
|
||||
question: "q2"
|
||||
result: "86f7e437faa5a7fce15d1ddcb9eaeaea377667b8"
|
||||
|
||||
|
||||
|
2
p5_classification/test_cases/q3/CONFIG
Normal file
@ -0,0 +1,2 @@
|
||||
max_points: "6"
|
||||
class: "PartialCreditQuestion"
|
1
p5_classification/test_cases/q3/grade.solution
Normal file
@ -0,0 +1 @@
|
||||
# This is the solution file for test_cases/q3/grade.test.
|
12
p5_classification/test_cases/q3/grade.test
Normal file
@ -0,0 +1,12 @@
|
||||
class: "GradeClassifierTest"
|
||||
classifierModule: "mira"
|
||||
classifierClass: "MiraClassifier"
|
||||
|
||||
max_iterations: "5"
|
||||
|
||||
datasetName: "bigDigitData"
|
||||
|
||||
# our solution: 87%
|
||||
exactOutput: "False"
|
||||
accuracyScale: "6"
|
||||
accuracyThresholds: "80"
|
2
p5_classification/test_cases/q4/CONFIG
Normal file
@ -0,0 +1,2 @@
|
||||
max_points: "6"
|
||||
class: "PartialCreditQuestion"
|
1
p5_classification/test_cases/q4/grade.solution
Normal file
@ -0,0 +1 @@
|
||||
# This is the solution file for test_cases/q4/grade.test.
|
14
p5_classification/test_cases/q4/grade.test
Normal file
@ -0,0 +1,14 @@
|
||||
class: "GradeClassifierTest"
|
||||
classifierModule: "naiveBayes"
|
||||
classifierClass: "NaiveBayesClassifier"
|
||||
|
||||
automaticTuning: "True"
|
||||
featureFunction: "enhancedFeatureExtractorDigit"
|
||||
|
||||
datasetName: "bigDigitData"
|
||||
|
||||
# baseline is 79%
|
||||
# our solution is 85%
|
||||
exactOutput: "False"
|
||||
accuracyScale: "3"
|
||||
accuracyThresholds: "80 84"
|
2
p5_classification/test_cases/q5/CONFIG
Normal file
@ -0,0 +1,2 @@
|
||||
max_points: "4"
|
||||
class: "PartialCreditQuestion"
|
1
p5_classification/test_cases/q5/contest.solution
Normal file
@ -0,0 +1 @@
|
||||
# This is the solution file for test_cases/q5/contest.test.
|
13
p5_classification/test_cases/q5/contest.test
Normal file
@ -0,0 +1,13 @@
|
||||
class: "GradeClassifierTest"
|
||||
classifierModule: "perceptron_pacman"
|
||||
classifierClass: "PerceptronClassifierPacman"
|
||||
|
||||
max_iterations: "5"
|
||||
|
||||
datasetName: "contestData"
|
||||
|
||||
featureFunction: "basicFeatureExtractorPacman"
|
||||
|
||||
exactOutput: "False"
|
||||
accuracyScale: "2"
|
||||
accuracyThresholds: "70"
|
1
p5_classification/test_cases/q5/suicide.solution
Normal file
@ -0,0 +1 @@
|
||||
# This is the solution file for test_cases/q5/suicide.test.
|
13
p5_classification/test_cases/q5/suicide.test
Normal file
@ -0,0 +1,13 @@
|
||||
class: "GradeClassifierTest"
|
||||
classifierModule: "perceptron_pacman"
|
||||
classifierClass: "PerceptronClassifierPacman"
|
||||
|
||||
max_iterations: "5"
|
||||
|
||||
datasetName: "suicideData"
|
||||
|
||||
featureFunction: "basicFeatureExtractorPacman"
|
||||
|
||||
exactOutput: "False"
|
||||
accuracyScale: "2"
|
||||
accuracyThresholds: "70"
|
2
p5_classification/test_cases/q6/CONFIG
Normal file
@ -0,0 +1,2 @@
|
||||
max_points: "4"
|
||||
class: "PartialCreditQuestion"
|
1
p5_classification/test_cases/q6/contest.solution
Normal file
@ -0,0 +1 @@
|
||||
# This is the solution file for test_cases/q6/contest.test.
|
14
p5_classification/test_cases/q6/contest.test
Normal file
@ -0,0 +1,14 @@
|
||||
class: "GradeClassifierTest"
|
||||
classifierModule: "perceptron_pacman"
|
||||
classifierClass: "PerceptronClassifierPacman"
|
||||
|
||||
automaticTuning: "True"
|
||||
featureFunction: "enhancedFeatureExtractorPacman"
|
||||
|
||||
max_iterations: "4"
|
||||
|
||||
datasetName: "contestData"
|
||||
|
||||
exactOutput: "False"
|
||||
accuracyScale: "2"
|
||||
accuracyThresholds: "90"
|
1
p5_classification/test_cases/q6/suicide.solution
Normal file
@ -0,0 +1 @@
|
||||
# This is the solution file for test_cases/q6/suicide.test.
|
14
p5_classification/test_cases/q6/suicide.test
Normal file
@ -0,0 +1,14 @@
|
||||
class: "GradeClassifierTest"
|
||||
classifierModule: "perceptron_pacman"
|
||||
classifierClass: "PerceptronClassifierPacman"
|
||||
|
||||
automaticTuning: "True"
|
||||
featureFunction: "enhancedFeatureExtractorPacman"
|
||||
|
||||
max_iterations: "4"
|
||||
|
||||
datasetName: "suicideData"
|
||||
|
||||
exactOutput: "False"
|
||||
accuracyScale: "2"
|
||||
accuracyThresholds: "80"
|
81
p5_classification/textDisplay.py
Normal file
@ -0,0 +1,81 @@
|
||||
# textDisplay.py
|
||||
# --------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
import time
|
||||
try:
|
||||
import pacman
|
||||
except:
|
||||
pass
|
||||
|
||||
DRAW_EVERY = 1
|
||||
SLEEP_TIME = 0 # This can be overwritten by __init__
|
||||
DISPLAY_MOVES = False
|
||||
QUIET = False # Supresses output
|
||||
|
||||
class NullGraphics:
|
||||
def initialize(self, state, isBlue = False):
|
||||
pass
|
||||
|
||||
def update(self, state):
|
||||
pass
|
||||
|
||||
def checkNullDisplay(self):
|
||||
return True
|
||||
|
||||
def pause(self):
|
||||
time.sleep(SLEEP_TIME)
|
||||
|
||||
def draw(self, state):
|
||||
print state
|
||||
|
||||
def updateDistributions(self, dist):
|
||||
pass
|
||||
|
||||
def finish(self):
|
||||
pass
|
||||
|
||||
class PacmanGraphics:
|
||||
def __init__(self, speed=None):
|
||||
if speed != None:
|
||||
global SLEEP_TIME
|
||||
SLEEP_TIME = speed
|
||||
|
||||
def initialize(self, state, isBlue = False):
|
||||
self.draw(state)
|
||||
self.pause()
|
||||
self.turn = 0
|
||||
self.agentCounter = 0
|
||||
|
||||
def update(self, state):
|
||||
numAgents = len(state.agentStates)
|
||||
self.agentCounter = (self.agentCounter + 1) % numAgents
|
||||
if self.agentCounter == 0:
|
||||
self.turn += 1
|
||||
if DISPLAY_MOVES:
|
||||
ghosts = [pacman.nearestPoint(state.getGhostPosition(i)) for i in range(1, numAgents)]
|
||||
print "%4d) P: %-8s" % (self.turn, str(pacman.nearestPoint(state.getPacmanPosition()))),'| Score: %-5d' % state.score,'| Ghosts:', ghosts
|
||||
if self.turn % DRAW_EVERY == 0:
|
||||
self.draw(state)
|
||||
self.pause()
|
||||
if state._win or state._lose:
|
||||
self.draw(state)
|
||||
|
||||
def pause(self):
|
||||
time.sleep(SLEEP_TIME)
|
||||
|
||||
def draw(self, state):
|
||||
print state
|
||||
|
||||
def finish(self):
|
||||
pass
|
653
p5_classification/util.py
Normal file
@ -0,0 +1,653 @@
|
||||
# util.py
|
||||
# -------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
import sys
|
||||
import inspect
|
||||
import heapq, random
|
||||
import cStringIO
|
||||
|
||||
|
||||
class FixedRandom:
|
||||
def __init__(self):
|
||||
fixedState = (3, (2147483648L, 507801126L, 683453281L, 310439348L, 2597246090L, \
|
||||
2209084787L, 2267831527L, 979920060L, 3098657677L, 37650879L, 807947081L, 3974896263L, \
|
||||
881243242L, 3100634921L, 1334775171L, 3965168385L, 746264660L, 4074750168L, 500078808L, \
|
||||
776561771L, 702988163L, 1636311725L, 2559226045L, 157578202L, 2498342920L, 2794591496L, \
|
||||
4130598723L, 496985844L, 2944563015L, 3731321600L, 3514814613L, 3362575829L, 3038768745L, \
|
||||
2206497038L, 1108748846L, 1317460727L, 3134077628L, 988312410L, 1674063516L, 746456451L, \
|
||||
3958482413L, 1857117812L, 708750586L, 1583423339L, 3466495450L, 1536929345L, 1137240525L, \
|
||||
3875025632L, 2466137587L, 1235845595L, 4214575620L, 3792516855L, 657994358L, 1241843248L, \
|
||||
1695651859L, 3678946666L, 1929922113L, 2351044952L, 2317810202L, 2039319015L, 460787996L, \
|
||||
3654096216L, 4068721415L, 1814163703L, 2904112444L, 1386111013L, 574629867L, 2654529343L, \
|
||||
3833135042L, 2725328455L, 552431551L, 4006991378L, 1331562057L, 3710134542L, 303171486L, \
|
||||
1203231078L, 2670768975L, 54570816L, 2679609001L, 578983064L, 1271454725L, 3230871056L, \
|
||||
2496832891L, 2944938195L, 1608828728L, 367886575L, 2544708204L, 103775539L, 1912402393L, \
|
||||
1098482180L, 2738577070L, 3091646463L, 1505274463L, 2079416566L, 659100352L, 839995305L, \
|
||||
1696257633L, 274389836L, 3973303017L, 671127655L, 1061109122L, 517486945L, 1379749962L, \
|
||||
3421383928L, 3116950429L, 2165882425L, 2346928266L, 2892678711L, 2936066049L, 1316407868L, \
|
||||
2873411858L, 4279682888L, 2744351923L, 3290373816L, 1014377279L, 955200944L, 4220990860L, \
|
||||
2386098930L, 1772997650L, 3757346974L, 1621616438L, 2877097197L, 442116595L, 2010480266L, \
|
||||
2867861469L, 2955352695L, 605335967L, 2222936009L, 2067554933L, 4129906358L, 1519608541L, \
|
||||
1195006590L, 1942991038L, 2736562236L, 279162408L, 1415982909L, 4099901426L, 1732201505L, \
|
||||
2934657937L, 860563237L, 2479235483L, 3081651097L, 2244720867L, 3112631622L, 1636991639L, \
|
||||
3860393305L, 2312061927L, 48780114L, 1149090394L, 2643246550L, 1764050647L, 3836789087L, \
|
||||
3474859076L, 4237194338L, 1735191073L, 2150369208L, 92164394L, 756974036L, 2314453957L, \
|
||||
323969533L, 4267621035L, 283649842L, 810004843L, 727855536L, 1757827251L, 3334960421L, \
|
||||
3261035106L, 38417393L, 2660980472L, 1256633965L, 2184045390L, 811213141L, 2857482069L, \
|
||||
2237770878L, 3891003138L, 2787806886L, 2435192790L, 2249324662L, 3507764896L, 995388363L, \
|
||||
856944153L, 619213904L, 3233967826L, 3703465555L, 3286531781L, 3863193356L, 2992340714L, \
|
||||
413696855L, 3865185632L, 1704163171L, 3043634452L, 2225424707L, 2199018022L, 3506117517L, \
|
||||
3311559776L, 3374443561L, 1207829628L, 668793165L, 1822020716L, 2082656160L, 1160606415L, \
|
||||
3034757648L, 741703672L, 3094328738L, 459332691L, 2702383376L, 1610239915L, 4162939394L, \
|
||||
557861574L, 3805706338L, 3832520705L, 1248934879L, 3250424034L, 892335058L, 74323433L, \
|
||||
3209751608L, 3213220797L, 3444035873L, 3743886725L, 1783837251L, 610968664L, 580745246L, \
|
||||
4041979504L, 201684874L, 2673219253L, 1377283008L, 3497299167L, 2344209394L, 2304982920L, \
|
||||
3081403782L, 2599256854L, 3184475235L, 3373055826L, 695186388L, 2423332338L, 222864327L, \
|
||||
1258227992L, 3627871647L, 3487724980L, 4027953808L, 3053320360L, 533627073L, 3026232514L, \
|
||||
2340271949L, 867277230L, 868513116L, 2158535651L, 2487822909L, 3428235761L, 3067196046L, \
|
||||
3435119657L, 1908441839L, 788668797L, 3367703138L, 3317763187L, 908264443L, 2252100381L, \
|
||||
764223334L, 4127108988L, 384641349L, 3377374722L, 1263833251L, 1958694944L, 3847832657L, \
|
||||
1253909612L, 1096494446L, 555725445L, 2277045895L, 3340096504L, 1383318686L, 4234428127L, \
|
||||
1072582179L, 94169494L, 1064509968L, 2681151917L, 2681864920L, 734708852L, 1338914021L, \
|
||||
1270409500L, 1789469116L, 4191988204L, 1716329784L, 2213764829L, 3712538840L, 919910444L, \
|
||||
1318414447L, 3383806712L, 3054941722L, 3378649942L, 1205735655L, 1268136494L, 2214009444L, \
|
||||
2532395133L, 3232230447L, 230294038L, 342599089L, 772808141L, 4096882234L, 3146662953L, \
|
||||
2784264306L, 1860954704L, 2675279609L, 2984212876L, 2466966981L, 2627986059L, 2985545332L, \
|
||||
2578042598L, 1458940786L, 2944243755L, 3959506256L, 1509151382L, 325761900L, 942251521L, \
|
||||
4184289782L, 2756231555L, 3297811774L, 1169708099L, 3280524138L, 3805245319L, 3227360276L, \
|
||||
3199632491L, 2235795585L, 2865407118L, 36763651L, 2441503575L, 3314890374L, 1755526087L, \
|
||||
17915536L, 1196948233L, 949343045L, 3815841867L, 489007833L, 2654997597L, 2834744136L, \
|
||||
417688687L, 2843220846L, 85621843L, 747339336L, 2043645709L, 3520444394L, 1825470818L, \
|
||||
647778910L, 275904777L, 1249389189L, 3640887431L, 4200779599L, 323384601L, 3446088641L, \
|
||||
4049835786L, 1718989062L, 3563787136L, 44099190L, 3281263107L, 22910812L, 1826109246L, \
|
||||
745118154L, 3392171319L, 1571490704L, 354891067L, 815955642L, 1453450421L, 940015623L, \
|
||||
796817754L, 1260148619L, 3898237757L, 176670141L, 1870249326L, 3317738680L, 448918002L, \
|
||||
4059166594L, 2003827551L, 987091377L, 224855998L, 3520570137L, 789522610L, 2604445123L, \
|
||||
454472869L, 475688926L, 2990723466L, 523362238L, 3897608102L, 806637149L, 2642229586L, \
|
||||
2928614432L, 1564415411L, 1691381054L, 3816907227L, 4082581003L, 1895544448L, 3728217394L, \
|
||||
3214813157L, 4054301607L, 1882632454L, 2873728645L, 3694943071L, 1297991732L, 2101682438L, \
|
||||
3952579552L, 678650400L, 1391722293L, 478833748L, 2976468591L, 158586606L, 2576499787L, \
|
||||
662690848L, 3799889765L, 3328894692L, 2474578497L, 2383901391L, 1718193504L, 3003184595L, \
|
||||
3630561213L, 1929441113L, 3848238627L, 1594310094L, 3040359840L, 3051803867L, 2462788790L, \
|
||||
954409915L, 802581771L, 681703307L, 545982392L, 2738993819L, 8025358L, 2827719383L, \
|
||||
770471093L, 3484895980L, 3111306320L, 3900000891L, 2116916652L, 397746721L, 2087689510L, \
|
||||
721433935L, 1396088885L, 2751612384L, 1998988613L, 2135074843L, 2521131298L, 707009172L, \
|
||||
2398321482L, 688041159L, 2264560137L, 482388305L, 207864885L, 3735036991L, 3490348331L, \
|
||||
1963642811L, 3260224305L, 3493564223L, 1939428454L, 1128799656L, 1366012432L, 2858822447L, \
|
||||
1428147157L, 2261125391L, 1611208390L, 1134826333L, 2374102525L, 3833625209L, 2266397263L, \
|
||||
3189115077L, 770080230L, 2674657172L, 4280146640L, 3604531615L, 4235071805L, 3436987249L, \
|
||||
509704467L, 2582695198L, 4256268040L, 3391197562L, 1460642842L, 1617931012L, 457825497L, \
|
||||
1031452907L, 1330422862L, 4125947620L, 2280712485L, 431892090L, 2387410588L, 2061126784L, \
|
||||
896457479L, 3480499461L, 2488196663L, 4021103792L, 1877063114L, 2744470201L, 1046140599L, \
|
||||
2129952955L, 3583049218L, 4217723693L, 2720341743L, 820661843L, 1079873609L, 3360954200L, \
|
||||
3652304997L, 3335838575L, 2178810636L, 1908053374L, 4026721976L, 1793145418L, 476541615L, \
|
||||
973420250L, 515553040L, 919292001L, 2601786155L, 1685119450L, 3030170809L, 1590676150L, \
|
||||
1665099167L, 651151584L, 2077190587L, 957892642L, 646336572L, 2743719258L, 866169074L, \
|
||||
851118829L, 4225766285L, 963748226L, 799549420L, 1955032629L, 799460000L, 2425744063L, \
|
||||
2441291571L, 1928963772L, 528930629L, 2591962884L, 3495142819L, 1896021824L, 901320159L, \
|
||||
3181820243L, 843061941L, 3338628510L, 3782438992L, 9515330L, 1705797226L, 953535929L, \
|
||||
764833876L, 3202464965L, 2970244591L, 519154982L, 3390617541L, 566616744L, 3438031503L, \
|
||||
1853838297L, 170608755L, 1393728434L, 676900116L, 3184965776L, 1843100290L, 78995357L, \
|
||||
2227939888L, 3460264600L, 1745705055L, 1474086965L, 572796246L, 4081303004L, 882828851L, \
|
||||
1295445825L, 137639900L, 3304579600L, 2722437017L, 4093422709L, 273203373L, 2666507854L, \
|
||||
3998836510L, 493829981L, 1623949669L, 3482036755L, 3390023939L, 833233937L, 1639668730L, \
|
||||
1499455075L, 249728260L, 1210694006L, 3836497489L, 1551488720L, 3253074267L, 3388238003L, \
|
||||
2372035079L, 3945715164L, 2029501215L, 3362012634L, 2007375355L, 4074709820L, 631485888L, \
|
||||
3135015769L, 4273087084L, 3648076204L, 2739943601L, 1374020358L, 1760722448L, 3773939706L, \
|
||||
1313027823L, 1895251226L, 4224465911L, 421382535L, 1141067370L, 3660034846L, 3393185650L, \
|
||||
1850995280L, 1451917312L, 3841455409L, 3926840308L, 1397397252L, 2572864479L, 2500171350L, \
|
||||
3119920613L, 531400869L, 1626487579L, 1099320497L, 407414753L, 2438623324L, 99073255L, \
|
||||
3175491512L, 656431560L, 1153671785L, 236307875L, 2824738046L, 2320621382L, 892174056L, \
|
||||
230984053L, 719791226L, 2718891946L, 624L), None)
|
||||
self.random = random.Random()
|
||||
self.random.setstate(fixedState)
|
||||
|
||||
"""
|
||||
Data structures useful for implementing SearchAgents
|
||||
"""
|
||||
|
||||
class Stack:
|
||||
"A container with a last-in-first-out (LIFO) queuing policy."
|
||||
def __init__(self):
|
||||
self.list = []
|
||||
|
||||
def push(self,item):
|
||||
"Push 'item' onto the stack"
|
||||
self.list.append(item)
|
||||
|
||||
def pop(self):
|
||||
"Pop the most recently pushed item from the stack"
|
||||
return self.list.pop()
|
||||
|
||||
def isEmpty(self):
|
||||
"Returns true if the stack is empty"
|
||||
return len(self.list) == 0
|
||||
|
||||
class Queue:
|
||||
"A container with a first-in-first-out (FIFO) queuing policy."
|
||||
def __init__(self):
|
||||
self.list = []
|
||||
|
||||
def push(self,item):
|
||||
"Enqueue the 'item' into the queue"
|
||||
self.list.insert(0,item)
|
||||
|
||||
def pop(self):
|
||||
"""
|
||||
Dequeue the earliest enqueued item still in the queue. This
|
||||
operation removes the item from the queue.
|
||||
"""
|
||||
return self.list.pop()
|
||||
|
||||
def isEmpty(self):
|
||||
"Returns true if the queue is empty"
|
||||
return len(self.list) == 0
|
||||
|
||||
class PriorityQueue:
|
||||
"""
|
||||
Implements a priority queue data structure. Each inserted item
|
||||
has a priority associated with it and the client is usually interested
|
||||
in quick retrieval of the lowest-priority item in the queue. This
|
||||
data structure allows O(1) access to the lowest-priority item.
|
||||
|
||||
Note that this PriorityQueue does not allow you to change the priority
|
||||
of an item. However, you may insert the same item multiple times with
|
||||
different priorities.
|
||||
"""
|
||||
def __init__(self):
|
||||
self.heap = []
|
||||
self.count = 0
|
||||
|
||||
def push(self, item, priority):
|
||||
# FIXME: restored old behaviour to check against old results better
|
||||
# FIXED: restored to stable behaviour
|
||||
entry = (priority, self.count, item)
|
||||
# entry = (priority, item)
|
||||
heapq.heappush(self.heap, entry)
|
||||
self.count += 1
|
||||
|
||||
def pop(self):
|
||||
(_, _, item) = heapq.heappop(self.heap)
|
||||
# (_, item) = heapq.heappop(self.heap)
|
||||
return item
|
||||
|
||||
def isEmpty(self):
|
||||
return len(self.heap) == 0
|
||||
|
||||
class PriorityQueueWithFunction(PriorityQueue):
|
||||
"""
|
||||
Implements a priority queue with the same push/pop signature of the
|
||||
Queue and the Stack classes. This is designed for drop-in replacement for
|
||||
those two classes. The caller has to provide a priority function, which
|
||||
extracts each item's priority.
|
||||
"""
|
||||
def __init__(self, priorityFunction):
|
||||
"priorityFunction (item) -> priority"
|
||||
self.priorityFunction = priorityFunction # store the priority function
|
||||
PriorityQueue.__init__(self) # super-class initializer
|
||||
|
||||
def push(self, item):
|
||||
"Adds an item to the queue with priority from the priority function"
|
||||
PriorityQueue.push(self, item, self.priorityFunction(item))
|
||||
|
||||
|
||||
def manhattanDistance( xy1, xy2 ):
|
||||
"Returns the Manhattan distance between points xy1 and xy2"
|
||||
return abs( xy1[0] - xy2[0] ) + abs( xy1[1] - xy2[1] )
|
||||
|
||||
"""
|
||||
Data structures and functions useful for various course projects
|
||||
|
||||
The search project should not need anything below this line.
|
||||
"""
|
||||
|
||||
class Counter(dict):
|
||||
"""
|
||||
A counter keeps track of counts for a set of keys.
|
||||
|
||||
The counter class is an extension of the standard python
|
||||
dictionary type. It is specialized to have number values
|
||||
(integers or floats), and includes a handful of additional
|
||||
functions to ease the task of counting data. In particular,
|
||||
all keys are defaulted to have value 0. Using a dictionary:
|
||||
|
||||
a = {}
|
||||
print a['test']
|
||||
|
||||
would give an error, while the Counter class analogue:
|
||||
|
||||
>>> a = Counter()
|
||||
>>> print a['test']
|
||||
0
|
||||
|
||||
returns the default 0 value. Note that to reference a key
|
||||
that you know is contained in the counter,
|
||||
you can still use the dictionary syntax:
|
||||
|
||||
>>> a = Counter()
|
||||
>>> a['test'] = 2
|
||||
>>> print a['test']
|
||||
2
|
||||
|
||||
This is very useful for counting things without initializing their counts,
|
||||
see for example:
|
||||
|
||||
>>> a['blah'] += 1
|
||||
>>> print a['blah']
|
||||
1
|
||||
|
||||
The counter also includes additional functionality useful in implementing
|
||||
the classifiers for this assignment. Two counters can be added,
|
||||
subtracted or multiplied together. See below for details. They can
|
||||
also be normalized and their total count and arg max can be extracted.
|
||||
"""
|
||||
def __getitem__(self, idx):
|
||||
self.setdefault(idx, 0)
|
||||
return dict.__getitem__(self, idx)
|
||||
|
||||
def incrementAll(self, keys, count):
|
||||
"""
|
||||
Increments all elements of keys by the same count.
|
||||
|
||||
>>> a = Counter()
|
||||
>>> a.incrementAll(['one','two', 'three'], 1)
|
||||
>>> a['one']
|
||||
1
|
||||
>>> a['two']
|
||||
1
|
||||
"""
|
||||
for key in keys:
|
||||
self[key] += count
|
||||
|
||||
def argMax(self):
|
||||
"""
|
||||
Returns the key with the highest value.
|
||||
"""
|
||||
if len(self.keys()) == 0: return None
|
||||
all = self.items()
|
||||
values = [x[1] for x in all]
|
||||
maxIndex = values.index(max(values))
|
||||
return all[maxIndex][0]
|
||||
|
||||
def sortedKeys(self):
|
||||
"""
|
||||
Returns a list of keys sorted by their values. Keys
|
||||
with the highest values will appear first.
|
||||
|
||||
>>> a = Counter()
|
||||
>>> a['first'] = -2
|
||||
>>> a['second'] = 4
|
||||
>>> a['third'] = 1
|
||||
>>> a.sortedKeys()
|
||||
['second', 'third', 'first']
|
||||
"""
|
||||
sortedItems = self.items()
|
||||
compare = lambda x, y: sign(y[1] - x[1])
|
||||
sortedItems.sort(cmp=compare)
|
||||
return [x[0] for x in sortedItems]
|
||||
|
||||
def totalCount(self):
|
||||
"""
|
||||
Returns the sum of counts for all keys.
|
||||
"""
|
||||
return sum(self.values())
|
||||
|
||||
def normalize(self):
|
||||
"""
|
||||
Edits the counter such that the total count of all
|
||||
keys sums to 1. The ratio of counts for all keys
|
||||
will remain the same. Note that normalizing an empty
|
||||
Counter will result in an error.
|
||||
"""
|
||||
total = float(self.totalCount())
|
||||
if total == 0: return
|
||||
for key in self.keys():
|
||||
self[key] = self[key] / total
|
||||
|
||||
def divideAll(self, divisor):
|
||||
"""
|
||||
Divides all counts by divisor
|
||||
"""
|
||||
divisor = float(divisor)
|
||||
for key in self:
|
||||
self[key] /= divisor
|
||||
|
||||
def copy(self):
|
||||
"""
|
||||
Returns a copy of the counter
|
||||
"""
|
||||
return Counter(dict.copy(self))
|
||||
|
||||
def __mul__(self, y ):
|
||||
"""
|
||||
Multiplying two counters gives the dot product of their vectors where
|
||||
each unique label is a vector element.
|
||||
|
||||
>>> a = Counter()
|
||||
>>> b = Counter()
|
||||
>>> a['first'] = -2
|
||||
>>> a['second'] = 4
|
||||
>>> b['first'] = 3
|
||||
>>> b['second'] = 5
|
||||
>>> a['third'] = 1.5
|
||||
>>> a['fourth'] = 2.5
|
||||
>>> a * b
|
||||
14
|
||||
"""
|
||||
sum = 0
|
||||
x = self
|
||||
if len(x) > len(y):
|
||||
x,y = y,x
|
||||
for key in x:
|
||||
if key not in y:
|
||||
continue
|
||||
sum += x[key] * y[key]
|
||||
return sum
|
||||
|
||||
def __radd__(self, y):
|
||||
"""
|
||||
Adding another counter to a counter increments the current counter
|
||||
by the values stored in the second counter.
|
||||
|
||||
>>> a = Counter()
|
||||
>>> b = Counter()
|
||||
>>> a['first'] = -2
|
||||
>>> a['second'] = 4
|
||||
>>> b['first'] = 3
|
||||
>>> b['third'] = 1
|
||||
>>> a += b
|
||||
>>> a['first']
|
||||
1
|
||||
"""
|
||||
for key, value in y.items():
|
||||
self[key] += value
|
||||
|
||||
def __add__( self, y ):
|
||||
"""
|
||||
Adding two counters gives a counter with the union of all keys and
|
||||
counts of the second added to counts of the first.
|
||||
|
||||
>>> a = Counter()
|
||||
>>> b = Counter()
|
||||
>>> a['first'] = -2
|
||||
>>> a['second'] = 4
|
||||
>>> b['first'] = 3
|
||||
>>> b['third'] = 1
|
||||
>>> (a + b)['first']
|
||||
1
|
||||
"""
|
||||
addend = Counter()
|
||||
for key in self:
|
||||
if key in y:
|
||||
addend[key] = self[key] + y[key]
|
||||
else:
|
||||
addend[key] = self[key]
|
||||
for key in y:
|
||||
if key in self:
|
||||
continue
|
||||
addend[key] = y[key]
|
||||
return addend
|
||||
|
||||
def __sub__( self, y ):
|
||||
"""
|
||||
Subtracting a counter from another gives a counter with the union of all keys and
|
||||
counts of the second subtracted from counts of the first.
|
||||
|
||||
>>> a = Counter()
|
||||
>>> b = Counter()
|
||||
>>> a['first'] = -2
|
||||
>>> a['second'] = 4
|
||||
>>> b['first'] = 3
|
||||
>>> b['third'] = 1
|
||||
>>> (a - b)['first']
|
||||
-5
|
||||
"""
|
||||
addend = Counter()
|
||||
for key in self:
|
||||
if key in y:
|
||||
addend[key] = self[key] - y[key]
|
||||
else:
|
||||
addend[key] = self[key]
|
||||
for key in y:
|
||||
if key in self:
|
||||
continue
|
||||
addend[key] = -1 * y[key]
|
||||
return addend
|
||||
|
||||
def raiseNotDefined():
|
||||
fileName = inspect.stack()[1][1]
|
||||
line = inspect.stack()[1][2]
|
||||
method = inspect.stack()[1][3]
|
||||
|
||||
print "*** Method not implemented: %s at line %s of %s" % (method, line, fileName)
|
||||
sys.exit(1)
|
||||
|
||||
def normalize(vectorOrCounter):
|
||||
"""
|
||||
normalize a vector or counter by dividing each value by the sum of all values
|
||||
"""
|
||||
normalizedCounter = Counter()
|
||||
if type(vectorOrCounter) == type(normalizedCounter):
|
||||
counter = vectorOrCounter
|
||||
total = float(counter.totalCount())
|
||||
if total == 0: return counter
|
||||
for key in counter.keys():
|
||||
value = counter[key]
|
||||
normalizedCounter[key] = value / total
|
||||
return normalizedCounter
|
||||
else:
|
||||
vector = vectorOrCounter
|
||||
s = float(sum(vector))
|
||||
if s == 0: return vector
|
||||
return [el / s for el in vector]
|
||||
|
||||
def nSample(distribution, values, n):
|
||||
if sum(distribution) != 1:
|
||||
distribution = normalize(distribution)
|
||||
rand = [random.random() for i in range(n)]
|
||||
rand.sort()
|
||||
samples = []
|
||||
samplePos, distPos, cdf = 0,0, distribution[0]
|
||||
while samplePos < n:
|
||||
if rand[samplePos] < cdf:
|
||||
samplePos += 1
|
||||
samples.append(values[distPos])
|
||||
else:
|
||||
distPos += 1
|
||||
cdf += distribution[distPos]
|
||||
return samples
|
||||
|
||||
def sample(distribution, values = None):
|
||||
if type(distribution) == Counter:
|
||||
items = sorted(distribution.items())
|
||||
distribution = [i[1] for i in items]
|
||||
values = [i[0] for i in items]
|
||||
if sum(distribution) != 1:
|
||||
distribution = normalize(distribution)
|
||||
choice = random.random()
|
||||
i, total= 0, distribution[0]
|
||||
while choice > total:
|
||||
i += 1
|
||||
total += distribution[i]
|
||||
return values[i]
|
||||
|
||||
def sampleFromCounter(ctr):
|
||||
items = sorted(ctr.items())
|
||||
return sample([v for k,v in items], [k for k,v in items])
|
||||
|
||||
def getProbability(value, distribution, values):
|
||||
"""
|
||||
Gives the probability of a value under a discrete distribution
|
||||
defined by (distributions, values).
|
||||
"""
|
||||
total = 0.0
|
||||
for prob, val in zip(distribution, values):
|
||||
if val == value:
|
||||
total += prob
|
||||
return total
|
||||
|
||||
def flipCoin( p ):
|
||||
r = random.random()
|
||||
return r < p
|
||||
|
||||
def chooseFromDistribution( distribution ):
|
||||
"Takes either a counter or a list of (prob, key) pairs and samples"
|
||||
if type(distribution) == dict or type(distribution) == Counter:
|
||||
return sample(distribution)
|
||||
r = random.random()
|
||||
base = 0.0
|
||||
for prob, element in distribution:
|
||||
base += prob
|
||||
if r <= base: return element
|
||||
|
||||
def nearestPoint( pos ):
|
||||
"""
|
||||
Finds the nearest grid point to a position (discretizes).
|
||||
"""
|
||||
( current_row, current_col ) = pos
|
||||
|
||||
grid_row = int( current_row + 0.5 )
|
||||
grid_col = int( current_col + 0.5 )
|
||||
return ( grid_row, grid_col )
|
||||
|
||||
def sign( x ):
|
||||
"""
|
||||
Returns 1 or -1 depending on the sign of x
|
||||
"""
|
||||
if( x >= 0 ):
|
||||
return 1
|
||||
else:
|
||||
return -1
|
||||
|
||||
def arrayInvert(array):
|
||||
"""
|
||||
Inverts a matrix stored as a list of lists.
|
||||
"""
|
||||
result = [[] for i in array]
|
||||
for outer in array:
|
||||
for inner in range(len(outer)):
|
||||
result[inner].append(outer[inner])
|
||||
return result
|
||||
|
||||
def matrixAsList( matrix, value = True ):
|
||||
"""
|
||||
Turns a matrix into a list of coordinates matching the specified value
|
||||
"""
|
||||
rows, cols = len( matrix ), len( matrix[0] )
|
||||
cells = []
|
||||
for row in range( rows ):
|
||||
for col in range( cols ):
|
||||
if matrix[row][col] == value:
|
||||
cells.append( ( row, col ) )
|
||||
return cells
|
||||
|
||||
def lookup(name, namespace):
|
||||
"""
|
||||
Get a method or class from any imported module from its name.
|
||||
Usage: lookup(functionName, globals())
|
||||
"""
|
||||
dots = name.count('.')
|
||||
if dots > 0:
|
||||
moduleName, objName = '.'.join(name.split('.')[:-1]), name.split('.')[-1]
|
||||
module = __import__(moduleName)
|
||||
return getattr(module, objName)
|
||||
else:
|
||||
modules = [obj for obj in namespace.values() if str(type(obj)) == "<type 'module'>"]
|
||||
options = [getattr(module, name) for module in modules if name in dir(module)]
|
||||
options += [obj[1] for obj in namespace.items() if obj[0] == name ]
|
||||
if len(options) == 1: return options[0]
|
||||
if len(options) > 1: raise Exception, 'Name conflict for %s'
|
||||
raise Exception, '%s not found as a method or class' % name
|
||||
|
||||
def pause():
|
||||
"""
|
||||
Pauses the output stream awaiting user feedback.
|
||||
"""
|
||||
print "<Press enter/return to continue>"
|
||||
raw_input()
|
||||
|
||||
|
||||
# code to handle timeouts
|
||||
#
|
||||
# FIXME
|
||||
# NOTE: TimeoutFuncton is NOT reentrant. Later timeouts will silently
|
||||
# disable earlier timeouts. Could be solved by maintaining a global list
|
||||
# of active time outs. Currently, questions which have test cases calling
|
||||
# this have all student code so wrapped.
|
||||
#
|
||||
import signal
|
||||
import time
|
||||
class TimeoutFunctionException(Exception):
|
||||
"""Exception to raise on a timeout"""
|
||||
pass
|
||||
|
||||
|
||||
class TimeoutFunction:
|
||||
def __init__(self, function, timeout):
|
||||
self.timeout = timeout
|
||||
self.function = function
|
||||
|
||||
def handle_timeout(self, signum, frame):
|
||||
raise TimeoutFunctionException()
|
||||
|
||||
def __call__(self, *args, **keyArgs):
|
||||
# If we have SIGALRM signal, use it to cause an exception if and
|
||||
# when this function runs too long. Otherwise check the time taken
|
||||
# after the method has returned, and throw an exception then.
|
||||
if hasattr(signal, 'SIGALRM'):
|
||||
old = signal.signal(signal.SIGALRM, self.handle_timeout)
|
||||
signal.alarm(self.timeout)
|
||||
try:
|
||||
result = self.function(*args, **keyArgs)
|
||||
finally:
|
||||
signal.signal(signal.SIGALRM, old)
|
||||
signal.alarm(0)
|
||||
else:
|
||||
startTime = time.time()
|
||||
result = self.function(*args, **keyArgs)
|
||||
timeElapsed = time.time() - startTime
|
||||
if timeElapsed >= self.timeout:
|
||||
self.handle_timeout(None, None)
|
||||
return result
|
||||
|
||||
|
||||
|
||||
_ORIGINAL_STDOUT = None
|
||||
_ORIGINAL_STDERR = None
|
||||
_MUTED = False
|
||||
|
||||
class WritableNull:
|
||||
def write(self, string):
|
||||
pass
|
||||
|
||||
def mutePrint():
|
||||
global _ORIGINAL_STDOUT, _ORIGINAL_STDERR, _MUTED
|
||||
if _MUTED:
|
||||
return
|
||||
_MUTED = True
|
||||
|
||||
_ORIGINAL_STDOUT = sys.stdout
|
||||
#_ORIGINAL_STDERR = sys.stderr
|
||||
sys.stdout = WritableNull()
|
||||
#sys.stderr = WritableNull()
|
||||
|
||||
def unmutePrint():
|
||||
global _ORIGINAL_STDOUT, _ORIGINAL_STDERR, _MUTED
|
||||
if not _MUTED:
|
||||
return
|
||||
_MUTED = False
|
||||
|
||||
sys.stdout = _ORIGINAL_STDOUT
|
||||
#sys.stderr = _ORIGINAL_STDERR
|
||||
|