Finish problem 2.
This commit is contained in:
parent
43ad652269
commit
a4031888de
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,2 +1,3 @@
|
||||
__pycache__
|
||||
*.pyc
|
||||
.vscode
|
||||
|
@ -223,8 +223,27 @@ class ExpectimaxAgent(MultiAgentSearchAgent):
|
||||
All ghosts should be modeled as choosing uniformly at random from their
|
||||
legal moves.
|
||||
"""
|
||||
"*** YOUR CODE HERE ***"
|
||||
util.raiseNotDefined()
|
||||
numAgents = gameState.getNumAgents()
|
||||
totalDepth = self.depth * numAgents
|
||||
|
||||
def value(depth, state):
|
||||
agentIndex = depth % numAgents
|
||||
actions = state.getLegalActions(agentIndex)
|
||||
if not actions or depth == totalDepth:
|
||||
return (self.evaluationFunction(state), "terminal")
|
||||
successorStates = [state.generateSuccessor(agentIndex, action) for action in actions]
|
||||
successorValueActionPairs = [(value(depth + 1, state)[0], action)
|
||||
for action, state in zip(actions, successorStates)]
|
||||
# Pacman (agentIndex=0) maximizes, ghosts minimize.
|
||||
if agentIndex == 0:
|
||||
return max(successorValueActionPairs)
|
||||
else:
|
||||
values = [va[0] for va in successorValueActionPairs]
|
||||
average = sum(values) / float(len(values))
|
||||
return (average, "expected")
|
||||
|
||||
# [0] is the best value, [1] is the best action
|
||||
return value(0, gameState)[1]
|
||||
|
||||
|
||||
def betterEvaluationFunction(currentGameState):
|
||||
@ -234,9 +253,51 @@ def betterEvaluationFunction(currentGameState):
|
||||
|
||||
DESCRIPTION: <write something here so we know what you did>
|
||||
"""
|
||||
"*** YOUR CODE HERE ***"
|
||||
util.raiseNotDefined()
|
||||
|
||||
from searchAgents import mazeDistance
|
||||
|
||||
state = currentGameState
|
||||
pos = state.getPacmanPosition()
|
||||
|
||||
# foodDists = [mazeDistance(pos, foodPos, state)
|
||||
# for foodPos in state.getFood().asList()]
|
||||
scaredTimeScore = 0
|
||||
scaredTimes = [ghostSt.scaredTimer for ghostSt in state.getGhostStates()]
|
||||
if scaredTimes:
|
||||
scaredTimeScore = min(scaredTimes)
|
||||
|
||||
ghostDists = []
|
||||
for ghostState in state.getGhostStates():
|
||||
x, y = ghostState.getPosition()
|
||||
ghostPos = (int(x), int(y))
|
||||
distance = mazeDistance(pos, ghostPos, state)
|
||||
ghostDists.append(distance)
|
||||
if ghostDists:
|
||||
try:
|
||||
ghostScore = 1. / min(ghostDists)
|
||||
except ZeroDivisionError:
|
||||
ghostScore = 100
|
||||
|
||||
foodDists = [manhattanDistance(pos, foodPos)
|
||||
for foodPos in state.getFood().asList()]
|
||||
foodScore = 0
|
||||
if foodDists:
|
||||
foodScore = 1. / min(foodDists)
|
||||
|
||||
gameScore = state.getScore()
|
||||
|
||||
weightGhost = -0.01
|
||||
weightFood = 0.5
|
||||
weightScore = 0.2
|
||||
weightScaredTime = 0.01
|
||||
|
||||
score = ghostScore * weightGhost + \
|
||||
foodScore * weightFood + \
|
||||
gameScore * weightScore + \
|
||||
scaredTimeScore * weightScaredTime
|
||||
# print(state)
|
||||
# print(score, ghostScore, foodScore, gameScore, scaredTimeScore)
|
||||
return score
|
||||
|
||||
# Abbreviation
|
||||
better = betterEvaluationFunction
|
||||
|
153
p2_multiagent/search.py
Normal file
153
p2_multiagent/search.py
Normal file
@ -0,0 +1,153 @@
|
||||
# search.py
|
||||
# ---------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
"""
|
||||
In search.py, you will implement generic search algorithms which are called by
|
||||
Pacman agents (in searchAgents.py).
|
||||
"""
|
||||
|
||||
import util
|
||||
|
||||
|
||||
class SearchProblem:
|
||||
"""
|
||||
This class outlines the structure of a search problem, but doesn't implement
|
||||
any of the methods (in object-oriented terminology: an abstract class).
|
||||
|
||||
You do not need to change anything in this class, ever.
|
||||
"""
|
||||
|
||||
def getStartState(self):
|
||||
"""
|
||||
Returns the start state for the search problem.
|
||||
"""
|
||||
util.raiseNotDefined()
|
||||
|
||||
def isGoalState(self, state):
|
||||
"""
|
||||
state: Search state
|
||||
|
||||
Returns True if and only if the state is a valid goal state.
|
||||
"""
|
||||
util.raiseNotDefined()
|
||||
|
||||
def getSuccessors(self, state):
|
||||
"""
|
||||
state: Search state
|
||||
|
||||
For a given state, this should return a list of triples, (successor,
|
||||
action, stepCost), where 'successor' is a successor to the current
|
||||
state, 'action' is the action required to get there, and 'stepCost' is
|
||||
the incremental cost of expanding to that successor.
|
||||
"""
|
||||
util.raiseNotDefined()
|
||||
|
||||
def getCostOfActions(self, actions):
|
||||
"""
|
||||
actions: A list of actions to take
|
||||
|
||||
This method returns the total cost of a particular sequence of actions.
|
||||
The sequence must be composed of legal moves.
|
||||
"""
|
||||
util.raiseNotDefined()
|
||||
|
||||
|
||||
def tinyMazeSearch(problem):
|
||||
"""
|
||||
Returns a sequence of moves that solves tinyMaze. For any other maze, the
|
||||
sequence of moves will be incorrect, so only use this for tinyMaze.
|
||||
"""
|
||||
from game import Directions
|
||||
s = Directions.SOUTH
|
||||
w = Directions.WEST
|
||||
return [s, s, w, s, w, w, s, w]
|
||||
|
||||
|
||||
def genericSearch(problem, getNewCostAndPriority):
|
||||
fringe = util.PriorityQueue()
|
||||
startState = problem.getStartState()
|
||||
fringe.push((startState, [], 0), 0)
|
||||
visited = {}
|
||||
|
||||
while True:
|
||||
if fringe.isEmpty():
|
||||
raise Exception("No path found.")
|
||||
|
||||
state, actions, cost = fringe.pop()
|
||||
|
||||
if problem.isGoalState(state):
|
||||
return actions
|
||||
|
||||
if state in visited and cost >= visited[state]:
|
||||
continue
|
||||
visited[state] = cost
|
||||
|
||||
for successor, action, stepCost in problem.getSuccessors(state):
|
||||
newCost, priority = getNewCostAndPriority(cost, stepCost, successor)
|
||||
newActions = list(actions) + [action]
|
||||
fringe.push((successor, newActions, newCost), priority)
|
||||
|
||||
|
||||
def depthFirstSearch(problem):
|
||||
"""
|
||||
Search the deepest nodes in the search tree first.
|
||||
|
||||
Your search algorithm needs to return a list of actions that reaches the
|
||||
goal. Make sure to implement a graph search algorithm.
|
||||
"""
|
||||
def getNewCostAndPriority(cost, stepCost, successor):
|
||||
newCost = cost + 1
|
||||
return newCost, -newCost
|
||||
return genericSearch(problem, getNewCostAndPriority)
|
||||
|
||||
|
||||
def breadthFirstSearch(problem):
|
||||
"""Search the shallowest nodes in the search tree first."""
|
||||
def getNewCostAndPriority(cost, stepCost, successor):
|
||||
newCost = cost + 1
|
||||
return newCost, newCost
|
||||
return genericSearch(problem, getNewCostAndPriority)
|
||||
|
||||
|
||||
def uniformCostSearch(problem):
|
||||
"""Search the node of least total cost first."""
|
||||
def getNewCostAndPriority(cost, stepCost, successor):
|
||||
newCost = cost + stepCost
|
||||
return newCost, newCost
|
||||
return genericSearch(problem, getNewCostAndPriority)
|
||||
|
||||
|
||||
def nullHeuristic(state, problem=None):
|
||||
"""
|
||||
A heuristic function estimates the cost from the current state to the nearest
|
||||
goal in the provided SearchProblem. This heuristic is trivial.
|
||||
"""
|
||||
return 0
|
||||
|
||||
|
||||
def aStarSearch(problem, heuristic=nullHeuristic):
|
||||
"""Search the node that has the lowest combined cost and heuristic first."""
|
||||
"*** YOUR CODE HERE ***"
|
||||
def getNewCostAndPriority(cost, stepCost, successor):
|
||||
newCost = cost + stepCost
|
||||
newPriority = newCost + heuristic(successor, problem)
|
||||
return newCost, newPriority
|
||||
return genericSearch(problem, getNewCostAndPriority)
|
||||
|
||||
|
||||
# Abbreviations
|
||||
bfs = breadthFirstSearch
|
||||
dfs = depthFirstSearch
|
||||
astar = aStarSearch
|
||||
ucs = uniformCostSearch
|
623
p2_multiagent/searchAgents.py
Normal file
623
p2_multiagent/searchAgents.py
Normal file
@ -0,0 +1,623 @@
|
||||
# searchAgents.py
|
||||
# ---------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
"""
|
||||
This file contains all of the agents that can be selected to control Pacman. To
|
||||
select an agent, use the '-p' option when running pacman.py. Arguments can be
|
||||
passed to your agent using '-a'. For example, to load a SearchAgent that uses
|
||||
depth first search (dfs), run the following command:
|
||||
|
||||
> python pacman.py -p SearchAgent -a fn=depthFirstSearch
|
||||
|
||||
Commands to invoke other search strategies can be found in the project
|
||||
description.
|
||||
|
||||
Please only change the parts of the file you are asked to. Look for the lines
|
||||
that say
|
||||
|
||||
"*** YOUR CODE HERE ***"
|
||||
|
||||
The parts you fill in start about 3/4 of the way down. Follow the project
|
||||
description for details.
|
||||
|
||||
Good luck and happy searching!
|
||||
"""
|
||||
|
||||
from game import Directions
|
||||
from game import Agent
|
||||
from game import Actions
|
||||
import util
|
||||
import time
|
||||
import search
|
||||
|
||||
|
||||
class GoWestAgent(Agent):
|
||||
"An agent that goes West until it can't."
|
||||
|
||||
def getAction(self, state):
|
||||
"The agent receives a GameState (defined in pacman.py)."
|
||||
if Directions.WEST in state.getLegalPacmanActions():
|
||||
return Directions.WEST
|
||||
else:
|
||||
return Directions.STOP
|
||||
|
||||
#######################################################
|
||||
# This portion is written for you, but will only work #
|
||||
# after you fill in parts of search.py #
|
||||
#######################################################
|
||||
|
||||
|
||||
class SearchAgent(Agent):
|
||||
"""
|
||||
This very general search agent finds a path using a supplied search
|
||||
algorithm for a supplied search problem, then returns actions to follow that
|
||||
path.
|
||||
|
||||
As a default, this agent runs DFS on a PositionSearchProblem to find
|
||||
location (1,1)
|
||||
|
||||
Options for fn include:
|
||||
depthFirstSearch or dfs
|
||||
breadthFirstSearch or bfs
|
||||
|
||||
|
||||
Note: You should NOT change any code in SearchAgent
|
||||
"""
|
||||
|
||||
def __init__(self, fn='depthFirstSearch', prob='PositionSearchProblem', heuristic='nullHeuristic'):
|
||||
# Warning: some advanced Python magic is employed below to find the right functions and problems
|
||||
|
||||
# Get the search function from the name and heuristic
|
||||
if fn not in dir(search):
|
||||
raise AttributeError, fn + ' is not a search function in search.py.'
|
||||
func = getattr(search, fn)
|
||||
if 'heuristic' not in func.func_code.co_varnames:
|
||||
print('[SearchAgent] using function ' + fn)
|
||||
self.searchFunction = func
|
||||
else:
|
||||
if heuristic in globals().keys():
|
||||
heur = globals()[heuristic]
|
||||
elif heuristic in dir(search):
|
||||
heur = getattr(search, heuristic)
|
||||
else:
|
||||
raise AttributeError, heuristic + ' is not a function in searchAgents.py or search.py.'
|
||||
print('[SearchAgent] using function %s and heuristic %s' %
|
||||
(fn, heuristic))
|
||||
# Note: this bit of Python trickery combines the search algorithm and the heuristic
|
||||
self.searchFunction = lambda x: func(x, heuristic=heur)
|
||||
|
||||
# Get the search problem type from the name
|
||||
if prob not in globals().keys() or not prob.endswith('Problem'):
|
||||
raise AttributeError, prob + ' is not a search problem type in SearchAgents.py.'
|
||||
self.searchType = globals()[prob]
|
||||
print('[SearchAgent] using problem type ' + prob)
|
||||
|
||||
def registerInitialState(self, state):
|
||||
"""
|
||||
This is the first time that the agent sees the layout of the game
|
||||
board. Here, we choose a path to the goal. In this phase, the agent
|
||||
should compute the path to the goal and store it in a local variable.
|
||||
All of the work is done in this method!
|
||||
|
||||
state: a GameState object (pacman.py)
|
||||
"""
|
||||
if self.searchFunction == None:
|
||||
raise Exception, "No search function provided for SearchAgent"
|
||||
starttime = time.time()
|
||||
problem = self.searchType(state) # Makes a new search problem
|
||||
self.actions = self.searchFunction(problem) # Find a path
|
||||
totalCost = problem.getCostOfActions(self.actions)
|
||||
print('Path found with total cost of %d in %.1f seconds' %
|
||||
(totalCost, time.time() - starttime))
|
||||
if '_expanded' in dir(problem):
|
||||
print('Search nodes expanded: %d' % problem._expanded)
|
||||
|
||||
def getAction(self, state):
|
||||
"""
|
||||
Returns the next action in the path chosen earlier (in
|
||||
registerInitialState). Return Directions.STOP if there is no further
|
||||
action to take.
|
||||
|
||||
state: a GameState object (pacman.py)
|
||||
"""
|
||||
if 'actionIndex' not in dir(self):
|
||||
self.actionIndex = 0
|
||||
i = self.actionIndex
|
||||
self.actionIndex += 1
|
||||
if i < len(self.actions):
|
||||
return self.actions[i]
|
||||
else:
|
||||
return Directions.STOP
|
||||
|
||||
|
||||
class PositionSearchProblem(search.SearchProblem):
|
||||
"""
|
||||
A search problem defines the state space, start state, goal test, successor
|
||||
function and cost function. This search problem can be used to find paths
|
||||
to a particular point on the pacman board.
|
||||
|
||||
The state space consists of (x,y) positions in a pacman game.
|
||||
|
||||
Note: this search problem is fully specified; you should NOT change it.
|
||||
"""
|
||||
|
||||
def __init__(self, gameState, costFn=lambda x: 1, goal=(1, 1), start=None, warn=True, visualize=True):
|
||||
"""
|
||||
Stores the start and goal.
|
||||
|
||||
gameState: A GameState object (pacman.py)
|
||||
costFn: A function from a search state (tuple) to a non-negative number
|
||||
goal: A position in the gameState
|
||||
"""
|
||||
self.walls = gameState.getWalls()
|
||||
self.startState = gameState.getPacmanPosition()
|
||||
if start != None:
|
||||
self.startState = start
|
||||
self.goal = goal
|
||||
self.costFn = costFn
|
||||
self.visualize = visualize
|
||||
if warn and (gameState.getNumFood() != 1 or not gameState.hasFood(*goal)):
|
||||
print 'Warning: this does not look like a regular search maze'
|
||||
|
||||
# For display purposes
|
||||
self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE
|
||||
|
||||
def getStartState(self):
|
||||
return self.startState
|
||||
|
||||
def isGoalState(self, state):
|
||||
isGoal = state == self.goal
|
||||
|
||||
# For display purposes only
|
||||
if isGoal and self.visualize:
|
||||
self._visitedlist.append(state)
|
||||
import __main__
|
||||
if '_display' in dir(__main__):
|
||||
# @UndefinedVariable
|
||||
if 'drawExpandedCells' in dir(__main__._display):
|
||||
__main__._display.drawExpandedCells(
|
||||
self._visitedlist) # @UndefinedVariable
|
||||
|
||||
return isGoal
|
||||
|
||||
def getSuccessors(self, state):
|
||||
"""
|
||||
Returns successor states, the actions they require, and a cost of 1.
|
||||
|
||||
As noted in search.py:
|
||||
For a given state, this should return a list of triples,
|
||||
(successor, action, stepCost), where 'successor' is a
|
||||
successor to the current state, 'action' is the action
|
||||
required to get there, and 'stepCost' is the incremental
|
||||
cost of expanding to that successor
|
||||
"""
|
||||
|
||||
successors = []
|
||||
for action in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]:
|
||||
x, y = state
|
||||
dx, dy = Actions.directionToVector(action)
|
||||
nextx, nexty = int(x + dx), int(y + dy)
|
||||
if not self.walls[nextx][nexty]:
|
||||
nextState = (nextx, nexty)
|
||||
cost = self.costFn(nextState)
|
||||
successors.append((nextState, action, cost))
|
||||
|
||||
# Bookkeeping for display purposes
|
||||
self._expanded += 1 # DO NOT CHANGE
|
||||
if state not in self._visited:
|
||||
self._visited[state] = True
|
||||
self._visitedlist.append(state)
|
||||
|
||||
return successors
|
||||
|
||||
def getCostOfActions(self, actions):
|
||||
"""
|
||||
Returns the cost of a particular sequence of actions. If those actions
|
||||
include an illegal move, return 999999.
|
||||
"""
|
||||
if actions == None:
|
||||
return 999999
|
||||
x, y = self.getStartState()
|
||||
cost = 0
|
||||
for action in actions:
|
||||
# Check figure out the next state and see whether its' legal
|
||||
dx, dy = Actions.directionToVector(action)
|
||||
x, y = int(x + dx), int(y + dy)
|
||||
if self.walls[x][y]:
|
||||
return 999999
|
||||
cost += self.costFn((x, y))
|
||||
return cost
|
||||
|
||||
|
||||
class StayEastSearchAgent(SearchAgent):
|
||||
"""
|
||||
An agent for position search with a cost function that penalizes being in
|
||||
positions on the West side of the board.
|
||||
|
||||
The cost function for stepping into a position (x,y) is 1/2^x.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.searchFunction = search.uniformCostSearch
|
||||
def costFn(pos): return .5 ** pos[0]
|
||||
self.searchType = lambda state: PositionSearchProblem(
|
||||
state, costFn, (1, 1), None, False)
|
||||
|
||||
|
||||
class StayWestSearchAgent(SearchAgent):
|
||||
"""
|
||||
An agent for position search with a cost function that penalizes being in
|
||||
positions on the East side of the board.
|
||||
|
||||
The cost function for stepping into a position (x,y) is 2^x.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.searchFunction = search.uniformCostSearch
|
||||
def costFn(pos): return 2 ** pos[0]
|
||||
self.searchType = lambda state: PositionSearchProblem(state, costFn)
|
||||
|
||||
|
||||
def manhattanHeuristic(position, problem, info={}):
|
||||
"The Manhattan distance heuristic for a PositionSearchProblem"
|
||||
xy1 = position
|
||||
xy2 = problem.goal
|
||||
return abs(xy1[0] - xy2[0]) + abs(xy1[1] - xy2[1])
|
||||
|
||||
|
||||
def euclideanHeuristic(position, problem, info={}):
|
||||
"The Euclidean distance heuristic for a PositionSearchProblem"
|
||||
xy1 = position
|
||||
xy2 = problem.goal
|
||||
return ((xy1[0] - xy2[0]) ** 2 + (xy1[1] - xy2[1]) ** 2) ** 0.5
|
||||
|
||||
#####################################################
|
||||
# This portion is incomplete. Time to write code! #
|
||||
#####################################################
|
||||
|
||||
|
||||
class CornersProblem(search.SearchProblem):
|
||||
"""
|
||||
This search problem finds paths through all four corners of a layout.
|
||||
|
||||
You must select a suitable state space and successor function
|
||||
"""
|
||||
|
||||
def __init__(self, startingGameState):
|
||||
"""
|
||||
Stores the walls, pacman's starting position and corners.
|
||||
"""
|
||||
self.walls = startingGameState.getWalls()
|
||||
self.startingPosition = startingGameState.getPacmanPosition()
|
||||
top, right = self.walls.height-2, self.walls.width-2
|
||||
self.corners = ((1, 1), (1, top), (right, 1), (right, top))
|
||||
for corner in self.corners:
|
||||
if not startingGameState.hasFood(*corner):
|
||||
print 'Warning: no food in corner ' + str(corner)
|
||||
self._expanded = 0 # DO NOT CHANGE; Number of search nodes expanded
|
||||
# Please add any code here which you would like to use
|
||||
# in initializing the problem
|
||||
|
||||
def getStartState(self):
|
||||
"""
|
||||
Returns the start state (in your state space, not the full Pacman state
|
||||
space)
|
||||
"""
|
||||
current = self.startingPosition
|
||||
visited = tuple([1 if corner == current else 0
|
||||
for corner in self.corners])
|
||||
return (self.startingPosition, visited)
|
||||
|
||||
def isGoalState(self, state):
|
||||
"""
|
||||
Returns whether this search state is a goal state of the problem.
|
||||
"""
|
||||
"*** YOUR CODE HERE ***"
|
||||
position, visited = state
|
||||
if sum(visited) == 4:
|
||||
return True
|
||||
return False
|
||||
|
||||
def getSuccessors(self, state):
|
||||
"""
|
||||
Returns successor states, the actions they require, and a cost of 1.
|
||||
|
||||
As noted in search.py:
|
||||
For a given state, this should return a list of triples, (successor,
|
||||
action, stepCost), where 'successor' is a successor to the current
|
||||
state, 'action' is the action required to get there, and 'stepCost'
|
||||
is the incremental cost of expanding to that successor
|
||||
"""
|
||||
|
||||
position, visited = state
|
||||
x, y = position
|
||||
successors = []
|
||||
options = [((x, y + 1), Directions.NORTH),
|
||||
((x, y - 1), Directions.SOUTH),
|
||||
((x + 1, y), Directions.EAST),
|
||||
((x - 1, y), Directions.WEST)]
|
||||
for newPosition, action in options:
|
||||
x, y = newPosition
|
||||
if self.walls[x][y]:
|
||||
continue
|
||||
if newPosition in self.corners:
|
||||
index = self.corners.index(newPosition)
|
||||
newVisited = list(visited)
|
||||
newVisited[index] = 1
|
||||
newVisited = tuple(newVisited)
|
||||
else:
|
||||
newVisited = visited
|
||||
newState = (newPosition, newVisited)
|
||||
successors.append((newState, action, 1))
|
||||
|
||||
self._expanded += 1 # DO NOT CHANGE
|
||||
return successors
|
||||
|
||||
def getCostOfActions(self, actions):
|
||||
"""
|
||||
Returns the cost of a particular sequence of actions. If those actions
|
||||
include an illegal move, return 999999. This is implemented for you.
|
||||
"""
|
||||
if actions == None:
|
||||
return 999999
|
||||
x, y = self.startingPosition
|
||||
for action in actions:
|
||||
dx, dy = Actions.directionToVector(action)
|
||||
x, y = int(x + dx), int(y + dy)
|
||||
if self.walls[x][y]:
|
||||
return 999999
|
||||
return len(actions)
|
||||
|
||||
|
||||
def cornersHeuristic(state, problem):
|
||||
"""
|
||||
A heuristic for the CornersProblem that you defined.
|
||||
|
||||
state: The current search state
|
||||
(a data structure you chose in your search problem)
|
||||
|
||||
problem: The CornersProblem instance for this layout.
|
||||
|
||||
This function should always return a number that is a lower bound on the
|
||||
shortest path from the state to a goal of the problem; i.e. it should be
|
||||
admissible (as well as consistent).
|
||||
"""
|
||||
corners = problem.corners # These are the corner coordinates
|
||||
position, visitedCorners = state
|
||||
|
||||
# self.corners = ((1, 1), (1, top), (right, 1), (right, top))
|
||||
minDist = min(corners[2][0] - 1, corners[1][1] - 1)
|
||||
|
||||
# Okay, I am having a way harder time with this than I should.
|
||||
# First, get only the corners Pacman hasn't visited yet.
|
||||
distToCorners = [util.manhattanDistance(position, corner)
|
||||
for corner, visited in zip(corners, visitedCorners)
|
||||
if visited == 0]
|
||||
|
||||
# If there are no corners left, we are done.
|
||||
if not distToCorners:
|
||||
return 0
|
||||
|
||||
distanceClosestCorner = min(distToCorners)
|
||||
cost = distanceClosestCorner + (len(distToCorners) - 1) * minDist
|
||||
return cost
|
||||
|
||||
|
||||
class AStarCornersAgent(SearchAgent):
|
||||
"A SearchAgent for FoodSearchProblem using A* and your foodHeuristic"
|
||||
|
||||
def __init__(self):
|
||||
self.searchFunction = lambda prob: search.aStarSearch(
|
||||
prob, cornersHeuristic)
|
||||
self.searchType = CornersProblem
|
||||
|
||||
|
||||
class FoodSearchProblem:
|
||||
"""
|
||||
A search problem associated with finding the a path that collects all of the
|
||||
food (dots) in a Pacman game.
|
||||
|
||||
A search state in this problem is a tuple ( pacmanPosition, foodGrid ) where
|
||||
pacmanPosition: a tuple (x,y) of integers specifying Pacman's position
|
||||
foodGrid: a Grid (see game.py) of either True or False, specifying remaining food
|
||||
"""
|
||||
|
||||
def __init__(self, startingGameState):
|
||||
self.start = (startingGameState.getPacmanPosition(),
|
||||
startingGameState.getFood())
|
||||
self.walls = startingGameState.getWalls()
|
||||
self.startingGameState = startingGameState
|
||||
self._expanded = 0 # DO NOT CHANGE
|
||||
self.heuristicInfo = {} # A dictionary for the heuristic to store information
|
||||
|
||||
def getStartState(self):
|
||||
return self.start
|
||||
|
||||
def isGoalState(self, state):
|
||||
return state[1].count() == 0
|
||||
|
||||
def getSuccessors(self, state):
|
||||
"Returns successor states, the actions they require, and a cost of 1."
|
||||
successors = []
|
||||
self._expanded += 1 # DO NOT CHANGE
|
||||
for direction in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]:
|
||||
x, y = state[0]
|
||||
dx, dy = Actions.directionToVector(direction)
|
||||
nextx, nexty = int(x + dx), int(y + dy)
|
||||
if not self.walls[nextx][nexty]:
|
||||
nextFood = state[1].copy()
|
||||
nextFood[nextx][nexty] = False
|
||||
successors.append((((nextx, nexty), nextFood), direction, 1))
|
||||
return successors
|
||||
|
||||
def getCostOfActions(self, actions):
|
||||
"""Returns the cost of a particular sequence of actions. If those actions
|
||||
include an illegal move, return 999999"""
|
||||
x, y = self.getStartState()[0]
|
||||
cost = 0
|
||||
for action in actions:
|
||||
# figure out the next state and see whether it's legal
|
||||
dx, dy = Actions.directionToVector(action)
|
||||
x, y = int(x + dx), int(y + dy)
|
||||
if self.walls[x][y]:
|
||||
return 999999
|
||||
cost += 1
|
||||
return cost
|
||||
|
||||
|
||||
class AStarFoodSearchAgent(SearchAgent):
|
||||
"A SearchAgent for FoodSearchProblem using A* and your foodHeuristic"
|
||||
|
||||
def __init__(self):
|
||||
self.searchFunction = lambda prob: search.aStarSearch(
|
||||
prob, foodHeuristic)
|
||||
self.searchType = FoodSearchProblem
|
||||
|
||||
|
||||
def foodHeuristic(state, problem):
|
||||
"""
|
||||
Your heuristic for the FoodSearchProblem goes here.
|
||||
|
||||
This heuristic must be consistent to ensure correctness. First, try to come
|
||||
up with an admissible heuristic; almost all admissible heuristics will be
|
||||
consistent as well.
|
||||
|
||||
If using A* ever finds a solution that is worse uniform cost search finds,
|
||||
your heuristic is *not* consistent, and probably not admissible! On the
|
||||
other hand, inadmissible or inconsistent heuristics may find optimal
|
||||
solutions, so be careful.
|
||||
|
||||
The state is a tuple ( pacmanPosition, foodGrid ) where foodGrid is a Grid
|
||||
(see game.py) of either True or False. You can call foodGrid.asList() to get
|
||||
a list of food coordinates instead.
|
||||
|
||||
If you want access to info like walls, capsules, etc., you can query the
|
||||
problem. For example, problem.walls gives you a Grid of where the walls
|
||||
are.
|
||||
|
||||
If you want to *store* information to be reused in other calls to the
|
||||
heuristic, there is a dictionary called problem.heuristicInfo that you can
|
||||
use. For example, if you only want to count the walls once and store that
|
||||
value, try: problem.heuristicInfo['wallCount'] = problem.walls.count()
|
||||
Subsequent calls to this heuristic can access
|
||||
problem.heuristicInfo['wallCount']
|
||||
"""
|
||||
position, foodGrid = state
|
||||
foodPositions = foodGrid.asList()
|
||||
|
||||
if not foodPositions:
|
||||
return 0
|
||||
|
||||
# We have to travel at least from x_min to x_max and y_min to y_max.
|
||||
foodX = [x for (x, y) in foodPositions]
|
||||
foodY = [y for (x, y) in foodPositions]
|
||||
cost = (max(foodX) - min(foodX)) + (max(foodY) - min(foodY))
|
||||
|
||||
# The previous gave over 9000 for trickySearch. We can improve by adding
|
||||
# the distance to the closest food position which gives over 7000 points.
|
||||
cost += min([util.manhattanDistance(position, foodPosition)
|
||||
for foodPosition in foodPositions])
|
||||
|
||||
# If I wanted to get full score, I would use the cost to the closest food,
|
||||
# plus a TSP from there. That would give us less than 7000 for sure.
|
||||
return cost
|
||||
|
||||
|
||||
class ClosestDotSearchAgent(SearchAgent):
|
||||
"Search for all food using a sequence of searches"
|
||||
|
||||
def registerInitialState(self, state):
|
||||
self.actions = []
|
||||
currentState = state
|
||||
while(currentState.getFood().count() > 0):
|
||||
nextPathSegment = self.findPathToClosestDot(
|
||||
currentState) # The missing piece
|
||||
self.actions += nextPathSegment
|
||||
for action in nextPathSegment:
|
||||
legal = currentState.getLegalActions()
|
||||
if action not in legal:
|
||||
t = (str(action), str(currentState))
|
||||
raise Exception, 'findPathToClosestDot returned an illegal move: %s!\n%s' % t
|
||||
currentState = currentState.generateSuccessor(0, action)
|
||||
self.actionIndex = 0
|
||||
print 'Path found with cost %d.' % len(self.actions)
|
||||
|
||||
def findPathToClosestDot(self, gameState):
|
||||
"""
|
||||
Returns a path (a list of actions) to the closest dot, starting from
|
||||
gameState.
|
||||
"""
|
||||
# Here are some useful elements of the startState
|
||||
startPosition = gameState.getPacmanPosition()
|
||||
food = gameState.getFood()
|
||||
walls = gameState.getWalls()
|
||||
problem = AnyFoodSearchProblem(gameState)
|
||||
return search.ucs(problem)
|
||||
|
||||
|
||||
class AnyFoodSearchProblem(PositionSearchProblem):
|
||||
"""
|
||||
A search problem for finding a path to any food.
|
||||
|
||||
This search problem is just like the PositionSearchProblem, but has a
|
||||
different goal test, which you need to fill in below. The state space and
|
||||
successor function do not need to be changed.
|
||||
|
||||
The class definition above, AnyFoodSearchProblem(PositionSearchProblem),
|
||||
inherits the methods of the PositionSearchProblem.
|
||||
|
||||
You can use this search problem to help you fill in the findPathToClosestDot
|
||||
method.
|
||||
"""
|
||||
|
||||
def __init__(self, gameState):
|
||||
"Stores information from the gameState. You don't need to change this."
|
||||
# Store the food for later reference
|
||||
self.food = gameState.getFood()
|
||||
|
||||
# Store info for the PositionSearchProblem (no need to change this)
|
||||
self.walls = gameState.getWalls()
|
||||
self.startState = gameState.getPacmanPosition()
|
||||
self.costFn = lambda x: 1
|
||||
self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE
|
||||
|
||||
def isGoalState(self, state):
|
||||
"""
|
||||
The state is Pacman's position. Fill this in with a goal test that will
|
||||
complete the problem definition.
|
||||
"""
|
||||
x, y = state
|
||||
if (x, y) in self.food.asList():
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def mazeDistance(point1, point2, gameState):
|
||||
"""
|
||||
Returns the maze distance between any two points, using the search functions
|
||||
you have already built. The gameState can be any game state -- Pacman's
|
||||
position in that state is ignored.
|
||||
|
||||
Example usage: mazeDistance( (2,4), (5,6), gameState)
|
||||
|
||||
This might be a useful helper function for your ApproximateSearchAgent.
|
||||
"""
|
||||
x1, y1 = point1
|
||||
x2, y2 = point2
|
||||
walls = gameState.getWalls()
|
||||
assert not walls[x1][y1], 'point1 is a wall: ' + str(point1)
|
||||
assert not walls[x2][y2], 'point2 is a wall: ' + str(point2)
|
||||
prob = PositionSearchProblem(
|
||||
gameState, start=point1, goal=point2, warn=False, visualize=False)
|
||||
return len(search.bfs(prob))
|
Loading…
Reference in New Issue
Block a user