euler/python/e072.py

83 lines
1.7 KiB
Python
Raw Normal View History

2019-08-02 00:28:53 +02:00
from lib_prime import primes
from functools import lru_cache
def relative_primes_count_factors(n, factors):
"""
https://math.stackexchange.com/questions/1178847/relative-primes
"""
d = 1
for f in factors:
n *= (f - 1)
d *= f
return n // d
def prime_factors_unique(n, primes_list, primes_set):
if n in primes_set:
return [n]
fs = []
rest = n
for p in primes_list:
if rest == 1:
return fs
if rest % p == 0:
fs.append(p)
while rest % p == 0:
rest = rest // p
def euler_072_brutal_brute_force():
d_max = 10**6
primes_list = primes(10**6)
primes_set = set(primes_list)
s = 0
for n in range(2, d_max + 1):
factors = prime_factors_unique(n, primes_list, primes_set)
rel_primes_count = relative_primes_count_factors(n, factors)
s += rel_primes_count
if n % 100000 == 0:
print(n) # progress... haha.
print(s)
return s
primes_list = primes(10**6)
primes_set = set(primes_list)
def euler_totient(p, a):
return (p - 1) * p ** (a - 1)
@lru_cache(maxsize=10**6)
def relative_primes(n):
if n == 1:
return 1
if n in primes_set:
return euler_totient(n, 1)
for p in primes_list:
if n % p == 0:
a = 0
while n % p == 0:
n = n // p
a += 1
return euler_totient(p, a) * relative_primes(n)
2019-07-21 20:13:28 +02:00
def euler_072():
2019-08-02 00:28:53 +02:00
s = 0
d_max = 10**6
for n in range(2, d_max + 1):
rel_primes_count = relative_primes(n)
s += rel_primes_count
return s
2019-07-21 20:13:28 +02:00
if __name__ == "__main__":
print("e072.py: " + str(euler_072()))
2019-08-02 00:28:53 +02:00
assert(euler_072() == 303963552391)