62 lines
1.7 KiB
Plaintext
62 lines
1.7 KiB
Plaintext
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Euler Problem 27\n",
|
|||
|
"\n",
|
|||
|
"Euler discovered the remarkable quadratic formula:\n",
|
|||
|
"\n",
|
|||
|
"$n^2 + n + 41$\n",
|
|||
|
"\n",
|
|||
|
"It turns out that the formula will produce 40 primes for the consecutive integer values 0≤n≤39. However, when $n=40$, $40^2 + 40 + 41 = 40(40+1)+41$ is divisible by $41$, and certainly when $n=41,41^2+41+41$ is clearly divisible by 41.\n",
|
|||
|
"\n",
|
|||
|
"The incredible formula $n^2−79n+1601$ was discovered, which produces 80 primes for the consecutive values 0≤n≤79. The product of the coefficients, $−79$ and $1601$, is $−126479$.\n",
|
|||
|
"\n",
|
|||
|
"Considering quadratics of the form:\n",
|
|||
|
"\n",
|
|||
|
"$n^2 + an +b$, where |a|<1000 and |b|≤1000\n",
|
|||
|
"\n",
|
|||
|
"where |n| is the modulus/absolute value of n e.g. |11|=11 and |−4|=4.\n",
|
|||
|
"\n",
|
|||
|
"Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n=0."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {
|
|||
|
"collapsed": true
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": []
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"completion_date": "Mon, 21 Aug 2017, 21:11",
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "Python 3",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.5.4"
|
|||
|
},
|
|||
|
"tags": [
|
|||
|
"quadratic primes"
|
|||
|
]
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 0
|
|||
|
}
|