euler/ipython/EulerProblem027.ipynb

62 lines
1.7 KiB
Plaintext
Raw Normal View History

2018-02-08 18:09:51 +01:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Euler Problem 27\n",
"\n",
"Euler discovered the remarkable quadratic formula:\n",
"\n",
"$n^2 + n + 41$\n",
"\n",
"It turns out that the formula will produce 40 primes for the consecutive integer values 0≤n≤39. However, when $n=40$, $40^2 + 40 + 41 = 40(40+1)+41$ is divisible by $41$, and certainly when $n=41,41^2+41+41$ is clearly divisible by 41.\n",
"\n",
"The incredible formula $n^279n+1601$ was discovered, which produces 80 primes for the consecutive values 0≤n≤79. The product of the coefficients, $79$ and $1601$, is $126479$.\n",
"\n",
"Considering quadratics of the form:\n",
"\n",
"$n^2 + an +b$, where |a|<1000 and |b|≤1000\n",
"\n",
"where |n| is the modulus/absolute value of n e.g. |11|=11 and |4|=4.\n",
"\n",
"Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n=0."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"completion_date": "Mon, 21 Aug 2017, 21:11",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.4"
},
"tags": [
"quadratic primes"
]
},
"nbformat": 4,
"nbformat_minor": 0
}