{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Euler Problem 27\n", "\n", "Euler discovered the remarkable quadratic formula:\n", "\n", "$n^2 + n + 41$\n", "\n", "It turns out that the formula will produce 40 primes for the consecutive integer values 0≤n≤39. However, when $n=40$, $40^2 + 40 + 41 = 40(40+1)+41$ is divisible by $41$, and certainly when $n=41,41^2+41+41$ is clearly divisible by 41.\n", "\n", "The incredible formula $n^2−79n+1601$ was discovered, which produces 80 primes for the consecutive values 0≤n≤79. The product of the coefficients, $−79$ and $1601$, is $−126479$.\n", "\n", "Considering quadratics of the form:\n", "\n", "$n^2 + an +b$, where |a|<1000 and |b|≤1000\n", "\n", "where |n| is the modulus/absolute value of n e.g. |11|=11 and |−4|=4.\n", "\n", "Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n=0." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "completion_date": "Mon, 21 Aug 2017, 21:11", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.4" }, "tags": [ "quadratic primes" ] }, "nbformat": 4, "nbformat_minor": 0 }