2019-11-26 09:38:28 +01:00
|
|
|
from collections import namedtuple
|
|
|
|
|
|
|
|
Result = namedtuple("Result", ['objective', 'is_optimal', 'xs'])
|
|
|
|
Item = namedtuple("Item", ['index', 'value', 'weight'])
|
|
|
|
Knapsack = namedtuple("Knapsack", ['count', 'capacity', 'items'])
|
2019-12-10 18:32:10 +01:00
|
|
|
Node = namedtuple("Node", ['index', 'value', 'room', 'estimate', 'path'])
|
2019-11-26 09:38:28 +01:00
|
|
|
|
|
|
|
|
|
|
|
def solve_knapsack_greedy(knapsack):
|
|
|
|
remaining_capacity = knapsack.capacity
|
|
|
|
current_value = 0
|
|
|
|
xs = [0] * knapsack.count
|
|
|
|
|
|
|
|
for item in knapsack.items:
|
|
|
|
if remaining_capacity >= item.weight:
|
|
|
|
remaining_capacity -= item.weight
|
|
|
|
current_value += item.value
|
|
|
|
xs[item.index] = 1
|
|
|
|
|
|
|
|
return Result(current_value, 0, xs)
|
|
|
|
|
|
|
|
|
|
|
|
def solve_knapsack_dynamic(knapsack):
|
|
|
|
value_column = [0 for _ in range(knapsack.capacity + 1)]
|
|
|
|
# Keep track for each item for what capacities we take
|
|
|
|
# the respective item. This allows us to backtrack the items
|
|
|
|
# for the optimal solution later.
|
|
|
|
item_taken = {i: set() for i in range(len(knapsack.items))}
|
|
|
|
|
|
|
|
for item in knapsack.items:
|
|
|
|
new_column = list(value_column)
|
|
|
|
for capacity in range(knapsack.capacity + 1):
|
|
|
|
if item.weight <= capacity:
|
|
|
|
# Calculate the new value for the capacity if we take the item.
|
|
|
|
new_value = item.value + value_column[capacity - item.weight]
|
|
|
|
if new_value > value_column[capacity]:
|
|
|
|
new_column[capacity] = new_value
|
|
|
|
item_taken[item.index].add(capacity)
|
|
|
|
|
|
|
|
# There is no else case because new_colum contains the right values
|
|
|
|
# from the previous item so we only have to update when the new
|
|
|
|
# value is better.
|
|
|
|
value_column = new_column
|
|
|
|
|
|
|
|
objective = value_column[-1]
|
|
|
|
# Dynamic programing computes the best posible solution.
|
|
|
|
is_optimal = 1
|
|
|
|
|
|
|
|
# Reconstruct which items are used for the optimal solution.
|
|
|
|
xs = []
|
|
|
|
current_index = knapsack.items[-1].index
|
|
|
|
current_capacity = knapsack.capacity
|
|
|
|
while current_index >= 0:
|
|
|
|
if current_capacity in item_taken[current_index]:
|
|
|
|
current_capacity -= knapsack.items[current_index].weight
|
|
|
|
xs.append(1)
|
|
|
|
else:
|
|
|
|
xs.append(0)
|
|
|
|
current_index -= 1
|
|
|
|
xs.reverse()
|
|
|
|
|
|
|
|
return Result(objective, is_optimal, xs)
|
|
|
|
|
|
|
|
|
|
|
|
def solve_knapsack_depth_first_search(knapsack):
|
2019-12-10 18:32:10 +01:00
|
|
|
knapsack.items.sort(key=lambda item: item.value / float(item.weight),
|
2019-12-04 18:50:14 +01:00
|
|
|
reverse=True)
|
|
|
|
|
2019-12-10 18:32:10 +01:00
|
|
|
def get_estimate(current_value, current_index, remaining_capacity):
|
|
|
|
estimated_value = current_value
|
|
|
|
for item in knapsack.items[current_index:]:
|
|
|
|
if item.weight <= remaining_capacity:
|
|
|
|
estimated_value += item.value
|
|
|
|
remaining_capacity -= item.weight
|
2019-12-04 18:50:14 +01:00
|
|
|
else:
|
2019-12-10 18:32:10 +01:00
|
|
|
v = int((remaining_capacity / float(item.weight)) * item.value)
|
|
|
|
estimated_value += v
|
|
|
|
return estimated_value
|
|
|
|
return estimated_value
|
|
|
|
|
|
|
|
estimate = get_estimate(0, 0, knapsack.capacity)
|
|
|
|
nodes = [Node(0, 0, knapsack.capacity, estimate, [])]
|
|
|
|
num_items = len(knapsack.items)
|
|
|
|
best_value = 0
|
|
|
|
best_path = []
|
|
|
|
|
|
|
|
while nodes:
|
|
|
|
current_node = nodes.pop()
|
|
|
|
current_index = current_node.index
|
|
|
|
|
|
|
|
if current_node.room < 0:
|
|
|
|
continue
|
|
|
|
|
|
|
|
if current_node.estimate < best_value:
|
|
|
|
continue
|
|
|
|
|
|
|
|
if current_node.value > best_value:
|
|
|
|
best_value = current_node.value
|
|
|
|
best_path = list(current_node.path)
|
|
|
|
|
|
|
|
if current_index == num_items:
|
|
|
|
continue
|
|
|
|
|
|
|
|
current_item = knapsack.items[current_index]
|
|
|
|
|
|
|
|
# Right child - do not take current_item
|
|
|
|
new_index = current_index + 1
|
|
|
|
new_value = current_node.value
|
|
|
|
new_room = current_node.room
|
|
|
|
new_estimate = get_estimate(new_value, new_index, new_room)
|
|
|
|
if new_estimate > best_value:
|
|
|
|
new_path = current_node.path + [0]
|
|
|
|
r = Node(new_index, new_value, new_room, new_estimate, new_path)
|
|
|
|
nodes.append(r)
|
|
|
|
|
|
|
|
# Left child - take current_item
|
|
|
|
new_index = current_index + 1
|
|
|
|
new_room = current_node.room - current_item.weight
|
|
|
|
if new_room >= 0:
|
|
|
|
new_value = current_node.value + current_item.value
|
|
|
|
new_estimate = get_estimate(new_value, new_index, new_room)
|
|
|
|
new_path = current_node.path + [1]
|
|
|
|
n = Node(new_index, new_value, new_room, new_estimate, new_path)
|
|
|
|
nodes.append(n)
|
|
|
|
|
|
|
|
# If we sort the items by estimate here it becomes
|
|
|
|
# best first search.
|
|
|
|
# nodes.sort(key=lambda node: node.estimate)
|
2019-12-04 18:50:14 +01:00
|
|
|
|
|
|
|
def correct_path(path):
|
|
|
|
path = path + [0] * (num_items - len(path))
|
|
|
|
values = zip(path, knapsack.items)
|
|
|
|
path = [v[0] for v in sorted(values, key=lambda value: value[1].index)]
|
|
|
|
return path
|
|
|
|
|
2019-12-10 18:32:10 +01:00
|
|
|
return Result(best_value, 0, correct_path(best_path))
|
2019-11-26 09:38:28 +01:00
|
|
|
|
|
|
|
|
|
|
|
def input_data_to_knapsack(input_data):
|
|
|
|
lines = input_data.split('\n')
|
|
|
|
item_count, capacity = map(int, lines[0].split())
|
|
|
|
|
|
|
|
items = []
|
|
|
|
for i in range(1, item_count + 1):
|
|
|
|
line = lines[i]
|
|
|
|
value, weight = map(int, line.split())
|
2019-12-04 18:50:14 +01:00
|
|
|
items.append(Item(i - 1, value, weight))
|
2019-11-26 09:38:28 +01:00
|
|
|
|
|
|
|
k = Knapsack(item_count, capacity, items)
|
|
|
|
return k
|
|
|
|
|
|
|
|
|
|
|
|
def result_to_output_data(result):
|
|
|
|
# prepare the solution in the specified output format
|
|
|
|
output_data = str(result.objective) + ' ' + str(result.is_optimal) + '\n'
|
|
|
|
output_data += ' '.join(map(str, result.xs))
|
|
|
|
return output_data
|
|
|
|
|
|
|
|
|
2019-12-04 18:50:14 +01:00
|
|
|
if __name__ == '__main__':
|
|
|
|
file_location = "./data/ks_60_0"
|
|
|
|
with open(file_location, 'r') as input_data_file:
|
|
|
|
input_data = input_data_file.read()
|
|
|
|
k = input_data_to_knapsack(input_data)
|
|
|
|
print(result_to_output_data(solve_knapsack_dynamic(k)))
|
|
|
|
print(result_to_output_data(solve_knapsack_depth_first_search(k)))
|