Make depth first search for Knapsack non-recursive and more efficient. Solves all problems in reasonable time now.

This commit is contained in:
Felix Martin 2019-12-10 12:32:10 -05:00
parent bb9678a493
commit c21240d9ea
3 changed files with 57 additions and 52 deletions

View File

@ -1,4 +0,0 @@
3 10
45 5
48 8
35 3

View File

@ -3,6 +3,7 @@ from collections import namedtuple
Result = namedtuple("Result", ['objective', 'is_optimal', 'xs'])
Item = namedtuple("Item", ['index', 'value', 'weight'])
Knapsack = namedtuple("Knapsack", ['count', 'capacity', 'items'])
Node = namedtuple("Node", ['index', 'value', 'room', 'estimate', 'path'])
def solve_knapsack_greedy(knapsack):
@ -62,57 +63,69 @@ def solve_knapsack_dynamic(knapsack):
def solve_knapsack_depth_first_search(knapsack):
knapsack.items.sort(key=lambda item: item.value / item.weight,
knapsack.items.sort(key=lambda item: item.value / float(item.weight),
reverse=True)
num_items = len(knapsack.items)
result = {"objective": 0,
"path": []}
def get_max_value(from_index, capacity):
value = 0
for i in range(from_index, num_items):
item = knapsack.items[i]
if item.weight <= capacity:
value += item.value
capacity -= item.weight
def get_estimate(current_value, current_index, remaining_capacity):
estimated_value = current_value
for item in knapsack.items[current_index:]:
if item.weight <= remaining_capacity:
estimated_value += item.value
remaining_capacity -= item.weight
else:
value += int((capacity / item.weight) * item.value)
break
return value
v = int((remaining_capacity / float(item.weight)) * item.value)
estimated_value += v
return estimated_value
return estimated_value
def search(index, capacity, value, path, result):
if value > result["objective"]:
result["objective"] = value
result["path"] = list(path)
estimate = get_estimate(0, 0, knapsack.capacity)
nodes = [Node(0, 0, knapsack.capacity, estimate, [])]
num_items = len(knapsack.items)
best_value = 0
best_path = []
if capacity <= 0:
return
while nodes:
current_node = nodes.pop()
current_index = current_node.index
if index == num_items:
return
if current_node.room < 0:
continue
# print("--- search")
# print("Index: {} capacity: {}, value: {}".format(index, capacity, value))
# print("Path {}".format(path))
if current_node.estimate < best_value:
continue
# Take current item.
max_value = get_max_value(index, capacity)
print(max_value)
item = knapsack.items[index]
# print("max_value: {}".format(max_value))
max_value_not = get_max_value(index + 1, capacity)
# print("max_value_not: {}".format(max_value_not))
if item.weight <= capacity and value + max_value > result["objective"]:
path.append(1)
search(index + 1, capacity - item.weight,
value + item.value, path, result)
path.pop()
if current_node.value > best_value:
best_value = current_node.value
best_path = list(current_node.path)
# Do not take current item.
if value + max_value_not > result["objective"]:
path.append(0)
search(index + 1, capacity, value, path, result)
path.pop()
if current_index == num_items:
continue
current_item = knapsack.items[current_index]
# Right child - do not take current_item
new_index = current_index + 1
new_value = current_node.value
new_room = current_node.room
new_estimate = get_estimate(new_value, new_index, new_room)
if new_estimate > best_value:
new_path = current_node.path + [0]
r = Node(new_index, new_value, new_room, new_estimate, new_path)
nodes.append(r)
# Left child - take current_item
new_index = current_index + 1
new_room = current_node.room - current_item.weight
if new_room >= 0:
new_value = current_node.value + current_item.value
new_estimate = get_estimate(new_value, new_index, new_room)
new_path = current_node.path + [1]
n = Node(new_index, new_value, new_room, new_estimate, new_path)
nodes.append(n)
# If we sort the items by estimate here it becomes
# best first search.
# nodes.sort(key=lambda node: node.estimate)
def correct_path(path):
path = path + [0] * (num_items - len(path))
@ -120,9 +133,7 @@ def solve_knapsack_depth_first_search(knapsack):
path = [v[0] for v in sorted(values, key=lambda value: value[1].index)]
return path
search(0, knapsack.capacity, 0, [], result)
return Result(result["objective"], 1, correct_path(result["path"]))
return Result(best_value, 0, correct_path(best_path))
def input_data_to_knapsack(input_data):

View File

@ -1,15 +1,13 @@
#!/usr/bin/python3
#!/usr/bin/pypy
# -*- coding: utf-8 -*-
import knapsack
def solve_it(input_data):
# Modify this code to run your optimization algorithm
k = knapsack.input_data_to_knapsack(input_data)
# r = knapsack.solve_knapsack_dynamic(k)
r = knapsack.solve_knapsack_depth_first_search(k)
# r = knapsack.solve_knapsack_greedy(k)
return knapsack.result_to_output_data(r)