SICP/ex-2_01-xx.scm

114 lines
3.4 KiB
Scheme
Raw Normal View History

2020-10-20 03:36:17 +02:00
(load "util.scm")
(define (add-rat x y)
(make-rat (+ (* (numer x) (denom y))
(* (numer y) (denom x)))
(* (denom x) (denom y))))
(define (sub-rat x y)
(make-rat (- (* (numer x) (denom y))
(* (numer y) (denom x)))
(* (denom x) (denom y))))
(define (mul-rat x y)
(make-rat (* (numer x) (numer y))
(* (denom x) (denom y))))
(define (div-rat x y)
(make-rat (* (numer x) (denom y))
(* (denom x) (numer y))))
(define (equal-rat? x y)
(= (* (numer x) (denom y))
(* (numer y) (denom x))))
(define (make-rat n d)
(let ((g (gcd n d)))
(cons (/ n g) (/ d g))))
(define (numer x) (car x))
(define (denom x) (cdr x))
(define (print-rat x)
(newline)
(display (numer x))
(display "/")
(display (denom x)))
; Examples
; (define one-half (make-rat 1 2))
; (print-rat one-half)
; (define one-third (make-rat 1 3))
; (print-rat (add-rat one-half one-third))
; (print-rat (mul-rat one-half one-third))
; (print-rat (add-rat one-third one-third))
(display "ex-2.1")
(define (make-rat n d)
(let ((g (gcd n d)))
(if (< (* n d) 0)
(cons (- (abs (/ n g))) (abs (/ d g)))
(cons (abs (/ n g)) (abs (/ d g))))))
(print-rat (make-rat 3 9))
(print-rat (make-rat -3 9))
(print-rat (make-rat 3 -9))
(print-rat (make-rat -3 -9))
(display "\n\nex-2.2")
2020-10-24 17:24:13 +02:00
(define (make-point x y) (cons x y))
(define (x-point p) (car p))
(define (y-point p) (cdr p))
(define (make-segment a b) (cons a b))
(define (start-segment s) (car s))
(define (end-segment s) (cdr s))
(define (midpoint-segment s)
(make-point (average (x-point (start-segment s)) (x-point (end-segment s)))
(average (y-point (start-segment s)) (y-point (end-segment s)))))
(define (print-point p)
(newline)
(display "(")
(display (x-point p))
(display ", ")
(display (y-point p))
(display ")"))
(define s (make-segment (make-point 1 2) (make-point 7 4)))
(print-point (midpoint-segment s))
(display "\n\nex-2.3\n")
; The first representation takes the two opposite corners of the rectangle.
(define (make-rectangle p1 p2) (cons p1 p2))
(define (corner-1-rectangle r) (car r))
(define (corner-2-rectangle r) (cdr r))
(define (area-rectangle r)
(abs (* (- (x-point (corner-1-rectangle r)) (x-point (corner-2-rectangle r)))
(- (y-point (corner-1-rectangle r)) (y-point (corner-2-rectangle r))))))
(define (perimeter-rectangle r)
(* 2 (+ (abs (- (x-point (corner-1-rectangle r)) (x-point (corner-2-rectangle r))))
(abs (- (y-point (corner-1-rectangle r)) (y-point (corner-2-rectangle r)))))))
(define r (make-rectangle (make-point -2 -2) (make-point -8 -10)))
(display (area-rectangle r)) (newline)
(display (perimeter-rectangle r)) (newline)
; The second representation takes one corner and the size of the rectangle.
; The consequence is that we have to calculate the second point for the
; corner-2 getter.
(define (make-rectangle p1 size) (cons p1 size))
(define (corner-1-rectangle r) (car r))
(define (corner-2-rectangle r)
(make-point (+ (x-point (car r)) (x-point (cdr r)))
(+ (y-point (car r)) (y-point (cdr r)))))
; Our higher level functions still deliver the same result even though the
; underlying presentation of the rectangle is different.
(define r (make-rectangle (make-point -2 -2) (make-point -6 -8)))
(display (area-rectangle r)) (newline)
(display (perimeter-rectangle r)) (newline)
(display "\nex-2.4\n")