(load "util.scm") (define (add-rat x y) (make-rat (+ (* (numer x) (denom y)) (* (numer y) (denom x))) (* (denom x) (denom y)))) (define (sub-rat x y) (make-rat (- (* (numer x) (denom y)) (* (numer y) (denom x))) (* (denom x) (denom y)))) (define (mul-rat x y) (make-rat (* (numer x) (numer y)) (* (denom x) (denom y)))) (define (div-rat x y) (make-rat (* (numer x) (denom y)) (* (denom x) (numer y)))) (define (equal-rat? x y) (= (* (numer x) (denom y)) (* (numer y) (denom x)))) (define (make-rat n d) (let ((g (gcd n d))) (cons (/ n g) (/ d g)))) (define (numer x) (car x)) (define (denom x) (cdr x)) (define (print-rat x) (newline) (display (numer x)) (display "/") (display (denom x))) ; Examples ; (define one-half (make-rat 1 2)) ; (print-rat one-half) ; (define one-third (make-rat 1 3)) ; (print-rat (add-rat one-half one-third)) ; (print-rat (mul-rat one-half one-third)) ; (print-rat (add-rat one-third one-third)) (display "ex-2.1") (define (make-rat n d) (let ((g (gcd n d))) (if (< (* n d) 0) (cons (- (abs (/ n g))) (abs (/ d g))) (cons (abs (/ n g)) (abs (/ d g)))))) (print-rat (make-rat 3 9)) (print-rat (make-rat -3 9)) (print-rat (make-rat 3 -9)) (print-rat (make-rat -3 -9)) (display "\n\nex-2.2") (define (make-point x y) (cons x y)) (define (x-point p) (car p)) (define (y-point p) (cdr p)) (define (make-segment a b) (cons a b)) (define (start-segment s) (car s)) (define (end-segment s) (cdr s)) (define (midpoint-segment s) (make-point (average (x-point (start-segment s)) (x-point (end-segment s))) (average (y-point (start-segment s)) (y-point (end-segment s))))) (define (print-point p) (newline) (display "(") (display (x-point p)) (display ", ") (display (y-point p)) (display ")")) (define s (make-segment (make-point 1 2) (make-point 7 4))) (print-point (midpoint-segment s)) (display "\n\nex-2.3\n") ; The first representation takes the two opposite corners of the rectangle. (define (make-rectangle p1 p2) (cons p1 p2)) (define (corner-1-rectangle r) (car r)) (define (corner-2-rectangle r) (cdr r)) (define (area-rectangle r) (abs (* (- (x-point (corner-1-rectangle r)) (x-point (corner-2-rectangle r))) (- (y-point (corner-1-rectangle r)) (y-point (corner-2-rectangle r)))))) (define (perimeter-rectangle r) (* 2 (+ (abs (- (x-point (corner-1-rectangle r)) (x-point (corner-2-rectangle r)))) (abs (- (y-point (corner-1-rectangle r)) (y-point (corner-2-rectangle r))))))) (define r (make-rectangle (make-point -2 -2) (make-point -8 -10))) (display (area-rectangle r)) (newline) (display (perimeter-rectangle r)) (newline) ; The second representation takes one corner and the size of the rectangle. ; The consequence is that we have to calculate the second point for the ; corner-2 getter. (define (make-rectangle p1 size) (cons p1 size)) (define (corner-1-rectangle r) (car r)) (define (corner-2-rectangle r) (make-point (+ (x-point (car r)) (x-point (cdr r))) (+ (y-point (car r)) (y-point (cdr r))))) ; Our higher level functions still deliver the same result even though the ; underlying presentation of the rectangle is different. (define r (make-rectangle (make-point -2 -2) (make-point -6 -8))) (display (area-rectangle r)) (newline) (display (perimeter-rectangle r)) (newline) (display "\nex-2.4\n")