1
0
Fork 0
ML4T/defeat_learners/DTLearner.py

109 lines
4.1 KiB
Python

import numpy as np
class DTLearner:
LEAF = -1
NA = -1
def __init__(self, leaf_size=1, verbose=False):
self.leaf_size = leaf_size
self.verbose = verbose
def author(self):
return 'felixm' # replace tb34 with your Georgia Tech username
def create_node(self, factor, split_value, left, right):
return np.array([(factor, split_value, left, right), ],
dtype='|i4, f4, i4, i4')
def query_point(self, point):
node_index = 0
while self.rel_tree[node_index][0] != self.LEAF:
node = self.rel_tree[node_index]
split_factor = node[0]
split_value = node[1]
if point[split_factor] <= split_value:
# Recurse into left sub-tree.
node_index += node[2]
else:
node_index += node[3]
v = self.rel_tree[node_index][1]
return v
def query(self, points):
"""
@summary: Estimate a set of test points given the model we built.
@param points: should be a numpy array with each row corresponding to a specific query.
@returns the estimated values according to the saved model.
"""
def query_point(p): return self.query_point(p)
r = np.apply_along_axis(query_point, 1, points)
return r
def build_tree(self, xs, y):
"""
@summary: Build a decision tree from the training data.
@param dataX: X values of data to add
@param dataY: the Y training values
"""
assert(xs.shape[0] == y.shape[0])
assert(xs.shape[0] > 0) # If this is 0 something went wrong.
if xs.shape[0] <= self.leaf_size:
value = np.mean(y)
return self.create_node(self.LEAF, value, self.NA, self.NA)
if np.all(y[0] == y):
return self.create_node(self.LEAF, y[0], self.NA, self.NA)
i, split_value = self.get_i_and_split_value(xs, y)
select_l = xs[:, i] <= split_value
select_r = xs[:, i] > split_value
lt = self.build_tree(xs[select_l], y[select_l])
rt = self.build_tree(xs[select_r], y[select_r])
root = self.create_node(i, split_value, 1, lt.shape[0] + 1)
root = np.concatenate([root, lt, rt])
return root
def addEvidence(self, data_x, data_y):
"""
@summary: Add training data to learner
@param dataX: X values of data to add
@param dataY: the Y training values
"""
self.rel_tree = self.build_tree(data_x, data_y)
def get_correlations(self, xs, y):
""" Return a list of sorted 2-tuples where the first element
is the correlation and the second element is the index. Sorted by
highest correlation first. """
# a = np.argmax([abs(np.corrcoef(xs[:,i], y)[0, 1])
# for i in range(xs.shape[1])])
correlations = []
for i in range(xs.shape[1]):
c = abs(np.corrcoef(xs[:, i], y=y)[0, 1])
correlations.append((c, i))
correlations.sort(reverse=True)
return correlations
def get_i_and_split_value(self, xs, y):
# If all elements are true we would get one sub-tree with zero
# elements, but we need at least one element in both trees. We avoid
# zero-trees in two steps. First we take the average between the median
# value and a smaller value an use that as the new split value. If that
# doesn't work (when all values are the same) we choose the X with the
# next smaller correlation. We assert that not all values are
# smaller/equal to the split value at the end.
for _, i in self.get_correlations(xs, y):
split_value = np.median(xs[:, i])
select = xs[:, i] <= split_value
if select.all():
for value in xs[:, i]:
if value < split_value:
split_value = (value + split_value) / 2.0
select = xs[:, i] <= split_value
if not select.all():
break
assert(not select.all())
return i, split_value