Finish project 5 marketsim successfully

This commit is contained in:
Felix Martin 2020-10-10 09:48:08 -04:00
parent cb72af1781
commit cb9ae77ddc
2 changed files with 33 additions and 33 deletions

View File

@ -26,10 +26,6 @@ GT ID: 1337 (replace with your GT ID)
"""
import pandas as pd
import numpy as np
import datetime as dt
import os
import sys
from util import get_data, plot_data
from optimize_something.optimization import calculate_stats
@ -76,25 +72,26 @@ def get_portfolio_value(holding, prices):
return value
def handle_orders(orders, holding, adj_closing_prices):
"""Process the orders."""
for date, order in orders.iterrows():
symbol, order, shares = order
adj_closing_price = adj_closing_prices[symbol]
cost = shares * adj_closing_price
if order == "BUY":
# print(f"Buy {shares:6} of {symbol:4} on {date}")
holding['cash'] -= cost
holding[symbol] += shares
elif order == "SELL":
# print(f"Sell {shares:6} of {symbol:4} on {date}")
holding['cash'] += cost
holding[symbol] -= shares
else:
raise Exception("Unexpected order type.")
def handle_order(date, order, holding, prices, commission, impact):
"""Process the order."""
symbol, order, shares = order
adj_closing_price = prices[symbol]
cost = shares * adj_closing_price
# Charge commission and deduct impact penalty
holding['cash'] -= (commission + impact * adj_closing_price * shares)
if order == "BUY":
# print(f"Buy {shares:6} of {symbol:4} on {date}")
holding['cash'] -= cost
holding[symbol] += shares
elif order == "SELL":
# print(f"Sell {shares:6} of {symbol:4} on {date}")
holding['cash'] += cost
holding[symbol] -= shares
else:
raise Exception("Unexpected order type.")
def compute_portvals(orders_file="./orders/orders-01.csv", start_val=1000000, commission=9.95, impact=0.005):
def compute_portvals(orders_file, start_val=1000000, commission=9.95, impact=0.005):
orders = read_orders(orders_file)
start_date, end_date, symbols = get_order_book_info(orders)
@ -106,22 +103,17 @@ def compute_portvals(orders_file="./orders/orders-01.csv", start_val=1000000, co
holding = {s: 0 for s in symbols}
holding['cash'] = start_val
orders_processed = 0
# Iterate over all trading days that are in the (inclusive) range of the
# order book dates. This implicitly ignores orders placed on non-trading
# days.
for date, values in prices.iterrows():
if date in orders.index:
current_orders = orders.loc[date:date]
orders_processed += current_orders.shape[0]
handle_orders(current_orders, holding, values)
# Process orders for that day.
for date, order in orders.loc[date:date].iterrows():
handle_order(date, order, holding, values, commission, impact)
# Compute portfolio value at the end of day.
values['Portval'] = get_portfolio_value(holding, values)
# Make sure we have processed all orders. If there was an order on a
# non-trading day we would currently not handle it.
assert(orders.shape[0] == orders_processed)
portvals = prices[['Portval']]
return portvals
return prices[['Portval']]
def test_code():
@ -129,6 +121,7 @@ def test_code():
sv = 1000000
portvals = compute_portvals(orders_file=of, start_val=sv)
if isinstance(portvals, pd.DataFrame):
portvals = portvals[portvals.columns[0]] # just get the first column
else:
@ -161,5 +154,9 @@ def test_code():
print(f"Final Portfolio Value: {portvals[-1]}")
def author():
return 'felixm'
if __name__ == "__main__":
test_code()

View File

@ -0,0 +1,3 @@
Date,Symbol,Order,Shares
2011-01-05,AAPL,BUY,1500
2011-01-20,AAPL,SELL,1500
1 Date Symbol Order Shares
2 2011-01-05 AAPL BUY 1500
3 2011-01-20 AAPL SELL 1500