Resolve split_value issue in DTLearner and pass all tests.
This commit is contained in:
parent
7007bc7514
commit
bd19b4fb18
assess_learners
@ -1,18 +1,14 @@
|
||||
import numpy as np
|
||||
from AbstractTreeLearner import AbstractTreeLearner
|
||||
|
||||
|
||||
class BagLearner(object):
|
||||
def __init__(self, learner, bags=20, boost=False, verbose=False, **kwargs):
|
||||
class BagLearner(AbstractTreeLearner):
|
||||
def __init__(self, learner, bags=9, boost=False, verbose=False, kwargs={}):
|
||||
self.learner = learner
|
||||
self.bags = bags
|
||||
self.boost = boost
|
||||
self.verbose = verbose
|
||||
self.kwargs = kwargs
|
||||
self.bags = bags
|
||||
self.learners = [learner(**kwargs) for _ in range(bags)]
|
||||
|
||||
def author(self):
|
||||
return 'felixm' # replace tb34 with your Georgia Tech username
|
||||
|
||||
def get_bag(self, data_x, data_y):
|
||||
num_items = int(data_x.shape[0] * 0.5) # 50% of samples
|
||||
bag_x, bag_y = [], []
|
||||
@ -22,7 +18,6 @@ class BagLearner(object):
|
||||
bag_y.append(data_y[i])
|
||||
return np.array(bag_x), np.array(bag_y)
|
||||
|
||||
|
||||
def addEvidence(self, data_x, data_y):
|
||||
"""
|
||||
@summary: Add training data to learner
|
||||
@ -36,10 +31,8 @@ class BagLearner(object):
|
||||
def query(self, points):
|
||||
"""
|
||||
@summary: Estimate a set of test points given the model we built.
|
||||
@param points: should be a numpy array with each row corresponding to a specific query.
|
||||
@param points: numpy array with each row corresponding to a query.
|
||||
@returns the estimated values according to the saved model.
|
||||
"""
|
||||
return np.mean([l.query(points) for l in self.learners], axis=0)
|
||||
|
||||
if __name__=="__main__":
|
||||
print("the secret clue is 'zzyzx'")
|
||||
|
@ -8,9 +8,6 @@ class DTLearner(AbstractTreeLearner):
|
||||
self.leaf_size = leaf_size
|
||||
self.verbose = verbose
|
||||
|
||||
def author(self):
|
||||
return 'felixm' # replace tb34 with your Georgia Tech username
|
||||
|
||||
def get_correlations(self, xs, y):
|
||||
""" Return a list of sorted 2-tuples where the first element
|
||||
is the correlation and the second element is the index. Sorted by
|
||||
@ -25,14 +22,23 @@ class DTLearner(AbstractTreeLearner):
|
||||
return correlations
|
||||
|
||||
def get_i_and_split_value(self, xs, y):
|
||||
# If all elements are true we would get one sub-tree with zero
|
||||
# elements, but we need at least one element in both trees. We avoid
|
||||
# zero-trees in two steps. First we take the average between the median
|
||||
# value and a smaller value an use that as the new split value. If that
|
||||
# doesn't work (when all values are the same) we choose the X with the
|
||||
# next smaller correlation. We assert that not all values are
|
||||
# smaller/equal to the split value at the end.
|
||||
for _, i in self.get_correlations(xs, y):
|
||||
split_value = np.median(xs[:,i])
|
||||
select = xs[:, i] <= split_value
|
||||
# If all elements are true we would get one sub-tree with zero
|
||||
# elements, but we need at least one element. Therefore, we only
|
||||
# choose the index if not all elements are true. If they are we go
|
||||
# to the next smaller correlation.
|
||||
if select.all():
|
||||
for value in xs[:, i]:
|
||||
if value < split_value:
|
||||
split_value = (value + split_value) / 2.0
|
||||
select = xs[:, i] <= split_value
|
||||
if not select.all():
|
||||
break
|
||||
assert(not select.all())
|
||||
return i, split_value
|
||||
|
||||
|
@ -48,12 +48,6 @@ if __name__=="__main__":
|
||||
trainY = data[:train_rows,-1]
|
||||
testX = data[train_rows:,0:-1]
|
||||
testY = data[train_rows:,-1]
|
||||
|
||||
# trainX = data[:, 0:-1]
|
||||
# trainY = data[:, -1]
|
||||
# testX = data[:, 0:-1]
|
||||
# testY = data[:, -1]
|
||||
|
||||
print(f"{testX.shape}")
|
||||
print(f"{testY.shape}")
|
||||
|
||||
@ -85,8 +79,7 @@ if __name__=="__main__":
|
||||
|
||||
# test_learner(lrl.LinRegLearner)
|
||||
test_learner(dtl.DTLearner, leaf_size=1)
|
||||
test_learner(rtl.RTLearner)
|
||||
test_learner(rtl.RTLearner, leaf_size=5)
|
||||
# test_learner(bgl.BagLearner, learner=dtl.DTLearner, bags=20)
|
||||
# learner = isl.InsaneLearner()
|
||||
# test_learner(rtl.RTLearner, leaf_size=6)
|
||||
test_learner(bgl.BagLearner, learner=dtl.DTLearner, bags=20, kwargs = {'leaf_size': 5})
|
||||
test_learner(isl.InsaneLearner)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user