Implment remaining indicators and add figures

This commit is contained in:
Felix Martin 2020-10-15 13:05:46 -04:00
parent 5ac3d46c1f
commit 9464943f75
7 changed files with 73 additions and 14 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

View File

@ -31,7 +31,7 @@ def test_optimal_strategy():
orders = pd.DataFrame(data=d, index=[start_date, end_date])
bench = compute_portvals(orders, start_value, 0, 0)
cum_ret_bench, avg_daily_ret_bench, \
std_daily_ret_bench, sharpe_ratio_bench = calculate_stats(bench, [1])
std_daily_ret_bench, sharpe_ratio_bench = calculate_stats(bench, [1])
# Compare portfolio against benchmark
print(f"Date Range: {start_date} to {end_date}")
@ -56,7 +56,7 @@ def test_optimal_strategy():
portvals.drop(columns=["Portval"], inplace=True)
portvals.plot(title="Optimal strategy versus 1000 shares of JPM")
plt.savefig('figure_5.png')
plt.savefig('figure_6.png')
def normalize(timeseries):
@ -68,9 +68,9 @@ def bollinger_band(df, symbol, period=20, m=2):
std = df[symbol].rolling(period).std()
boll_up = boll_sma + m * std
boll_lo = boll_sma - m * std
df[f"Boll({symbol}, {period})-sma"] = boll_sma
df[f"Boll({symbol}, {period})-up"] = boll_up
df[f"Boll({symbol}, {period})-lo"] = boll_lo
df[f"{symbol}-Boll({period})-sma"] = boll_sma
df[f"{symbol}-Boll({period})-up"] = boll_up
df[f"{symbol}-Boll({period})-lo"] = boll_lo
def sma(df, symbol, period):
@ -78,31 +78,90 @@ def sma(df, symbol, period):
df[f"{symbol}-sma({period})"] = df[symbol].rolling(period).mean()
def ema(df, symbol, period):
"""Adds a new column to the dataframe EMA(period)"""
df[f"{symbol}-ema({period})"] = df[symbol].ewm(span=period).mean()
def price_sma(df, symbol, period):
"""Calculates SMA and adds new column price divided by SMA to the df."""
sma = df[symbol].rolling(period).mean()
df[f"{symbol}-price/sma({period})"] = df[symbol] / sma
def main():
# test_optimal_strategy()
def rsi(df, symbol, period=14):
"""Calculates relative strength index over given period."""
def rsi(x):
pct = x.pct_change()
avg_gain = pct[pct > 0].mean()
avg_loss = pct[pct <= 0].abs().mean()
rsi = 100 - (100 /
(1 + ((avg_gain / period) /
(avg_loss / period))))
return rsi
key = f"{symbol}-rsi({period})"
# Add one to get 'period' price changes (first change is nan).
period += 1
df[key] = df[symbol].rolling(period).apply(rsi)
def macd(df, symbol):
macd = df[symbol].ewm(span=12).mean() - df[symbol].ewm(span=26).mean()
df[f"{symbol}-macd"] = macd
df[f"{symbol}-macd-signal"] = macd.rolling(9).mean()
def price_delta(df, symbol, period=1):
"""Calculate delta between previous day and today."""
df[f"{symbol}-diff({period})"] = df[symbol].diff(periods=period)
def test_indicators():
symbol = "JPM"
sd = dt.datetime(2008, 1, 1)
ed = dt.datetime(2009, 12, 31)
df = get_data([symbol], pd.date_range(sd, ed))
df.drop(columns=["SPY"], inplace=True)
df = normalize(df)
df_orig = df.copy()
# df = normalize(df)
sma(df, symbol, 21)
ema(df, symbol, 21)
df.plot(title="21 SMA and EMA")
plt.savefig('figure_1.png')
df = df_orig.copy()
sma(df, symbol, 8)
# price_sma(df, symbol, 8)
# bollinger_band(df, symbol)
price_sma(df, symbol, 8)
df.plot(title="SMA and price / SMA", subplots=True)
plt.savefig('figure_2.png')
# TODO
# rsi(df, symbol)
# macd(df, symbol)
df = df_orig.copy()
bollinger_band(df, symbol)
df.plot(title="Bollinger Band")
plt.savefig('figure_3.png')
plot_data(df)
df = df_orig.copy()
rsi(df, symbol)
fig, axes = plt.subplots(nrows=2, sharex=True)
df[symbol].plot(ax=axes[0], title="JPM price action")
df["JPM-rsi(14)"].plot(ax=axes[1], title="RSI")
plt.savefig('figure_4.png')
df = df_orig.copy()
macd(df, symbol)
fig, axes = plt.subplots(nrows=2, sharex=True)
df[symbol].plot(ax=axes[0], title="JPM price action")
df[["JPM-macd", "JPM-macd-signal"]].plot(ax=axes[1])
plt.savefig('figure_5.png')
def main():
test_optimal_strategy()
test_indicators()
if __name__ == "__main__":