Finish first version of Q trader

This commit is contained in:
Felix Martin 2020-11-09 15:07:52 -05:00
parent 169dd8278d
commit 761a0366e4
2 changed files with 77 additions and 41 deletions

View File

@ -3,6 +3,13 @@ import pandas as pd
import util
import indicators
from qlearning_robot.QLearner import QLearner as Learner
from dataclasses import dataclass
@dataclass
class Holding:
cash: int
shares: int
equity: int
class QLearner(object):
@ -17,15 +24,12 @@ class QLearner(object):
self.bins = {}
self.num_states = self.get_num_states()
self.num_actions = 3 # buy, sell, hold
if verbose:
print(f"{self.num_states=}")
self.learner = Learner(self.num_states, self.num_actions)
def row_to_state(self, holding, df_row):
"""Transforms a row into a state value."""
assert(holding in [-1000, 0, 1000])
holding = (holding + 1000) // 1000
if self.verbose:
print(f"{holding=}")
remaining_states = self.num_states
state = holding * (remaining_states // 3)
remaining_states //= 3
@ -35,8 +39,6 @@ class QLearner(object):
bin_n = self.indicator_value_to_bin(indicator, value)
interval = remaining_states // self.n_bins
state += bin_n * interval
if self.verbose:
print(f"{value=} {bin_n=} {interval=} {state=}")
remaining_states //= self.n_bins
return state
@ -57,7 +59,7 @@ class QLearner(object):
elif indicator.startswith("price_sma_"):
period = int(indicator.replace("price_sma_", ""))
indicators.price_sma(df, symbol, [period])
df.drop(columns=["SPY", symbol], inplace=True)
df.drop(columns=["SPY"], inplace=True)
df.dropna(inplace=True)
def bin_indicators(self, df):
@ -73,50 +75,85 @@ class QLearner(object):
num_states *= self.n_bins
return num_states
def update_holding(self, action, holding):
def handle_order(self, action, holding, adj_closing_price):
shares = 0
if action == 0: # buy
return 1000
if holding == 0 or holding == -1000:
return 1000
if holding.shares == 0 or holding.shares == -1000:
shares = 1000
elif action == 1: # sell
return -1000
if holding.shares== 0 or holding.shares == 1000:
shares = -1000
elif action == 2: # hold
return 0
raise Exception()
shares = 0
cost = shares * adj_closing_price
if shares != 0:
# Charge commission and deduct impact penalty
holding.cash -= self.commission
holding.cash -= (self.impact * adj_closing_price * abs(shares))
holding.cash -= cost
holding.shares += shares
holding.equity = holding.cash + holding.shares * adj_closing_price
def get_reward(self, equity, new_equity):
if new_equity > equity:
return 1
return -1
def train(self, df, symbol, sv):
holding = Holding(sv, 0, sv)
row = df.iloc[0]
state = self.row_to_state(holding.shares, row)
action = self.learner.querysetstate(state)
adj_closing_price = row[symbol]
self.handle_order(action, holding, adj_closing_price)
for index, row in df.iloc[1:].iterrows():
adj_closing_price = row[symbol]
new_equity = holding.cash + holding.shares * adj_closing_price
r = self.get_reward(holding.equity, new_equity)
s_prime = self.row_to_state(holding.shares, row)
a = self.learner.query(s_prime, r)
self.handle_order(a, holding, adj_closing_price)
if self.verbose:
print(f"{holding=} {s_prime=} {r=} {a=}")
def addEvidence(self, symbol="IBM", sd=dt.datetime(2008, 1, 1), ed=dt.datetime(2009, 1, 1), sv=10000):
df = util.get_data([symbol], pd.date_range(sd, ed))
self.add_indicators(df, symbol)
self.bin_indicators(df)
self.learner = Learner(self.num_states, self.num_actions)
holding = 0
s = self.row_to_state(holding, df.iloc[0])
a = self.learner.querysetstate(state)
print(f"{action=}")
for row in df.iloc[1:].itertuples(index=False):
holding = update_holding(a, holding)
print(row)
# self.learner.query(data_x, y.to_numpy())
# data_x = df[self.indicators].to_numpy()
for _ in range(10):
self.train(df, symbol, sv)
def testPolicy(self, symbol="IBM", sd=dt.datetime(2009, 1, 1), ed=dt.datetime(2010, 1, 1), sv=10000):
df = util.get_data([symbol], pd.date_range(sd, ed))
self._add_indicators(df, symbol)
# data_x = df[self.indicators].to_numpy()
# data_y = pd.DataFrame(index=df.index, data=self.learner.query(data_x))
orders = pd.DataFrame(index=df.index)
orders["Symbol"] = symbol
orders["Order"] = ""
orders["Shares"] = 0
return orders
shares = orders["Shares"]
self.add_indicators(df, symbol)
holding = 0
for index, row in df.iterrows():
state = self.row_to_state(holding, row)
action = self.learner.querysetstate(state)
if action == 0: # buy
if holding == 0 or holding == -1000:
holding += 1000
orders.loc[index, "Shares"] = 1000
elif action == 1: # sell
if holding == 0 or holding == 1000:
holding -= 1000
orders.loc[index, "Shares"] = -1000
elif action == 2: # hold
pass
if self.testing:
return orders
else:
return orders[["Shares"]]

View File

@ -136,7 +136,7 @@ def experiment1(create_report=False):
sd_out = dt.datetime(2010, 1, 1) # out-sample
ed_out = dt.datetime(2011, 12, 31) # out-sample
df = util.get_data([symbol], pd.date_range(sd, ed_out))
df = util.get_data([symbol], pd.date_range(sd_out, ed_out))
df.drop(columns=["SPY"], inplace=True)
if create_report:
@ -147,15 +147,14 @@ def experiment1(create_report=False):
# visualize_correlations(symbol, df)
# plot_indicators(symbol, df)
# bs = BenchmarkStrategy()
# orders = bs.testPolicy(symbol, sd_out, ed_out, sv)
# df["Benchmark"] = marketsim.compute_portvals(orders, sv)
# df["Orders Benchmark"] = orders["Shares"]
bs = BenchmarkStrategy()
orders = bs.testPolicy(symbol, sd_out, ed_out, sv)
df["Benchmark"] = marketsim.compute_portvals(orders, sv)
df["Orders Benchmark"] = orders["Shares"]
ql = QLearner(testing=True, verbose=True)
# ql = QLearner(testing=True, verbose=False, commission=10, impact=0.005)
ql = QLearner(testing=True, verbose=False)
ql.addEvidence(symbol, sd, ed, sv)
return
orders = ql.testPolicy(symbol, sd_out, ed_out, sv)
df["QL"] = marketsim.compute_portvals(orders, sv)
df["Orders QL"] = orders["Shares"]