Finish project 8 and course!
This commit is contained in:
parent
6e1f70bcba
commit
063d9a75ae
@ -14,13 +14,13 @@ class Holding:
|
||||
|
||||
class QLearner(object):
|
||||
|
||||
def __init__(self, verbose=False, impact=0.0, commission=0.0, testing=False):
|
||||
def __init__(self, verbose=False, impact=0.0, commission=0.0, testing=False, n_bins=5):
|
||||
self.verbose = verbose
|
||||
self.impact = impact
|
||||
self.commission = commission
|
||||
self.testing = testing # Decides which type of order df to return.
|
||||
self.indicators = ['macd_diff', 'rsi', 'price_sma_8']
|
||||
self.n_bins = 5
|
||||
self.n_bins = n_bins
|
||||
self.bins = {}
|
||||
self.num_states = self.get_num_states()
|
||||
self.num_actions = 3 # buy, sell, hold
|
||||
@ -134,7 +134,7 @@ class QLearner(object):
|
||||
self.add_indicators(df, symbol)
|
||||
self.bin_indicators(df)
|
||||
|
||||
for _ in range(10):
|
||||
for _ in range(15):
|
||||
self.train(df, symbol, sv)
|
||||
|
||||
def testPolicy(self, symbol="IBM", sd=dt.datetime(2009, 1, 1), ed=dt.datetime(2010, 1, 1), sv=10000):
|
||||
|
@ -128,20 +128,63 @@ def compare_all_strategies(symbol, sv, sd, ed):
|
||||
plt.savefig('figure_2.png', dpi=fig.dpi)
|
||||
|
||||
|
||||
def compare_number_trades(symbol, sv, sd, ed):
|
||||
def compare_number_trades():
|
||||
symbol = "JPM"
|
||||
sv = 10000
|
||||
sd = dt.datetime(2008, 1, 1) # in-sample
|
||||
ed = dt.datetime(2009, 12, 31) # in-sample
|
||||
|
||||
df = util.get_data([symbol], pd.date_range(sd, ed))
|
||||
df.drop(columns=["SPY"], inplace=True)
|
||||
|
||||
print(f"| commission | n_orders |")
|
||||
print(f"-------------------------")
|
||||
for commission in [0, 9.95, 20, 50, 100]:
|
||||
ql = QLearner(testing=True, commission=commission, impact=0.005)
|
||||
ql.addEvidence(symbol, sd, ed, sv)
|
||||
orders = ql.testPolicy(symbol, sd, ed, sv)
|
||||
n_orders = orders[orders["Shares"] != 0].shape[0]
|
||||
print(f"| {commission} | {n_orders} |")
|
||||
|
||||
def compare_q_learners():
|
||||
symbol = "JPM"
|
||||
sv = 10000
|
||||
sd = dt.datetime(2008, 1, 1) # in-sample
|
||||
ed = dt.datetime(2009, 12, 31) # in-sample
|
||||
sd_out = dt.datetime(2010, 1, 1) # out-sample
|
||||
ed_out = dt.datetime(2011, 12, 31) # out-sample
|
||||
|
||||
df = util.get_data([symbol], pd.date_range(sd_out, ed_out))
|
||||
df.drop(columns=["SPY"], inplace=True)
|
||||
|
||||
bs = BenchmarkStrategy()
|
||||
orders = bs.testPolicy(symbol, sd_out, ed_out, sv)
|
||||
df["Benchmark"] = indicators.normalize(marketsim.compute_portvals(orders, sv))
|
||||
df["Orders Benchmark"] = orders["Shares"]
|
||||
|
||||
ql = QLearner(testing=True, verbose=False)
|
||||
ql.addEvidence(symbol, sd, ed, sv)
|
||||
orders = ql.testPolicy(symbol, sd, ed, sv)
|
||||
n_orders_no_commission = orders[orders["Shares"] != 0].shape[0]
|
||||
orders = ql.testPolicy(symbol, sd_out, ed_out, sv)
|
||||
df["QL 5"] = indicators.normalize(marketsim.compute_portvals(orders, sv))
|
||||
df["Orders QL 5"] = orders["Shares"]
|
||||
|
||||
ql = QLearner(testing=True, verbose=False, commission=9.95, impact=0.005)
|
||||
ql = QLearner(testing=True, verbose=False, n_bins=4)
|
||||
ql.addEvidence(symbol, sd, ed, sv)
|
||||
orders = ql.testPolicy(symbol, sd, ed, sv)
|
||||
n_orders_commision = orders[orders["Shares"] != 0].shape[0]
|
||||
print(f"{n_orders_no_commission=} {n_orders_commision=}")
|
||||
orders = ql.testPolicy(symbol, sd_out, ed_out, sv)
|
||||
df["QL 4"] = indicators.normalize(marketsim.compute_portvals(orders, sv))
|
||||
df["Orders QL 4"] = orders["Shares"]
|
||||
|
||||
fig, ax = plt.subplots(3, sharex=True)
|
||||
df[[symbol]].plot(ax=ax[0])
|
||||
df[["Benchmark", "QL 5", "QL 4"]].plot(ax=ax[1])
|
||||
df[["Orders Benchmark", "Orders QL 5", "Orders QL 4"]].plot(ax=ax[2])
|
||||
|
||||
for a in ax:
|
||||
a.grid()
|
||||
m = MultiCursor(fig.canvas, ax, color='r', lw=0.5)
|
||||
fig.set_size_inches(10, 8, forward=True)
|
||||
plt.savefig('figure_4.png', dpi=fig.dpi)
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
def experiment1(create_report=False):
|
||||
@ -152,27 +195,28 @@ def experiment1(create_report=False):
|
||||
sd_out = dt.datetime(2010, 1, 1) # out-sample
|
||||
ed_out = dt.datetime(2011, 12, 31) # out-sample
|
||||
|
||||
df = util.get_data([symbol], pd.date_range(sd, ed))
|
||||
df = util.get_data([symbol], pd.date_range(sd_out, ed_out))
|
||||
df.drop(columns=["SPY"], inplace=True)
|
||||
|
||||
if create_report:
|
||||
compare_manual_strategies(symbol, sv, sd, ed)
|
||||
compare_all_strategies(symbol, sv, sd, ed)
|
||||
return
|
||||
sys.exit(0)
|
||||
|
||||
# visualize_correlations(symbol, df)
|
||||
# plot_indicators(symbol, df)
|
||||
# compare_number_trades(symbol, sv, sd, ed)
|
||||
# compare_q_learners()
|
||||
|
||||
bs = BenchmarkStrategy()
|
||||
orders = bs.testPolicy(symbol, sd, ed, sv)
|
||||
df["Benchmark"] = marketsim.compute_portvals(orders, sv)
|
||||
orders = bs.testPolicy(symbol, sd_out, ed_out, sv)
|
||||
df["Benchmark"] = indicators.normalize(marketsim.compute_portvals(orders, sv))
|
||||
df["Orders Benchmark"] = orders["Shares"]
|
||||
|
||||
ql = QLearner(testing=True, verbose=False, commission=9.95, impact=0.005)
|
||||
ql = QLearner(testing=True, verbose=False)
|
||||
ql.addEvidence(symbol, sd, ed, sv)
|
||||
orders = ql.testPolicy(symbol, sd, ed, sv)
|
||||
df["QL"] = marketsim.compute_portvals(orders, sv)
|
||||
orders = ql.testPolicy(symbol, sd_out, ed_out, sv)
|
||||
df["QL"] = indicators.normalize(marketsim.compute_portvals(orders, sv))
|
||||
df["Orders QL"] = orders["Shares"]
|
||||
|
||||
fig, ax = plt.subplots(3, sharex=True)
|
||||
@ -184,6 +228,8 @@ def experiment1(create_report=False):
|
||||
a.grid()
|
||||
m = MultiCursor(fig.canvas, ax, color='r', lw=0.5)
|
||||
plt.show()
|
||||
# fig.set_size_inches(10, 8, forward=True)
|
||||
# plt.savefig('figure_4.png', dpi=fig.dpi)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -0,0 +1,8 @@
|
||||
import experiment1
|
||||
|
||||
def experiment2():
|
||||
experiment1.compare_number_trades()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
experiment2()
|
BIN
strategy_evaluation/figure_3.png
Normal file
BIN
strategy_evaluation/figure_3.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 85 KiB |
BIN
strategy_evaluation/figure_4.png
Normal file
BIN
strategy_evaluation/figure_4.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 130 KiB |
@ -1,3 +1,75 @@
|
||||
# Report
|
||||
This document is the final report for the machine learning for trading
|
||||
course. I have implemented two manual strategies, a random tree
|
||||
learner-based strategy and one based on Q-learning.
|
||||
|
||||
# Experiment 1
|
||||
|
||||
I have implemented two manual strategies. The first strategy buys on a
|
||||
bullish MACD cross with a MACD smaller than zero and sells on a bearish
|
||||
MACD cross with a MACD greater than one.
|
||||
|
||||
The second strategy uses MACD diff (the difference between the MACD and
|
||||
the MACD signal), RSI, and price SMA with a period of eight. I have
|
||||
plotted the metrics over their one, three, and five days return to find
|
||||
reasonable thresholds for the strategy.
|
||||
|
||||
![Scatter plot to find reasonable thresholds.](figure_3.png)
|
||||
|
||||
Based on the scatter plots, I have created a list of buy and sell
|
||||
signals. Each signal uses the current number of shares owned and one of
|
||||
the three indicators. The following figure shows the result for both
|
||||
manual strategies compared to the benchmark. Both approaches do well in
|
||||
the in-sample period but worse afterward, which I expected because I
|
||||
cherry-picked the thresholds based on the in-sample period's scatter
|
||||
plots.
|
||||
|
||||
![First strategy based on MACD. Better than just holding.](figure_1.png)
|
||||
|
||||
Next, I have implemented a random tree-based strategy learner. The
|
||||
learner uses a leaf size of five and no bagging. A smaller leaf size
|
||||
would result in overfitting to the in-sample data. But as the following
|
||||
screenshot shows, five works well, and the RT learner does well for the
|
||||
out of sample data.
|
||||
|
||||
![Manual strategy compared to RT learner.](figure_2.png)
|
||||
|
||||
I have also implemented a strategy learner based on Q-learning. The
|
||||
Q-learner uses fifteen training runs on the in-sample data. It mostly
|
||||
does well for the out of sample data, but it looks like the RT-based
|
||||
strategy learner is better.
|
||||
|
||||
I am using a bin-size of five for the three indicators mentioned before.
|
||||
That results in 375 (3x5x5x5) states with only about 500 in-sample data
|
||||
points. Probably the Q-learner is overfitting to the in-sample data.
|
||||
Indeed, with bin sizes of four, the Q learner performs better for the
|
||||
out-of-sample data.
|
||||
|
||||
![Strategy learner based on Q-Learning with using four and five bins
|
||||
for discretization out of sample.](figure_4.png)
|
||||
|
||||
# Experiment 2
|
||||
|
||||
Experiment 2 aims to show that the strategy learner trades differently
|
||||
when there is a commission, and the impact is not zero. The RT-based
|
||||
trader does not consider the commission value, but the Q-learning based
|
||||
trader does.
|
||||
|
||||
However, it seems like a commission smaller than $10 does not affect
|
||||
the number of trades significantly. Only when the commission is around
|
||||
$50 or with a slippage of 1% we see considerably fewer transactions.
|
||||
|
||||
| commission | n_orders |
|
||||
|------------|----------|
|
||||
| 9.95 | 79 |
|
||||
| 20 | 83 |
|
||||
| 50 | 63 |
|
||||
| 100 | 37 |
|
||||
|
||||
# Closing Remarks
|
||||
|
||||
Machine Learning for Trading is a great course. It gives an excellent
|
||||
introduction to finance, trading, and machine learning without getting lost in
|
||||
technical or mathematical details. I have enjoyed building decision tree
|
||||
learners and a Q learner from first principles. At the same time, the course
|
||||
accurately teaches powerful libraries such as NumPy and Pandas.
|
||||
|
||||
![First strategy based on MACD. Better than just holding](figure_1.png)
|
||||
|
@ -1,6 +1,8 @@
|
||||
from experiment1 import experiment1
|
||||
from experiment2 import experiment2
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
experiment1(create_report=True)
|
||||
experiment2()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user