intro2ai/p1_search/submission_autograder.py
2021-10-19 13:07:31 -04:00

42 lines
9.2 KiB
Python

# submission_autograder.py
# ------------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
from codecs import open
"""
CS 188 Local Submission Autograder
Written by the CS 188 Staff
==============================================================================
_____ _ _
/ ____| | | |
| (___ | |_ ___ _ __ | |
\___ \| __/ _ \| '_ \| |
____) | || (_) | |_) |_|
|_____/ \__\___/| .__/(_)
| |
|_|
Modifying or tampering with this file is a violation of course policy.
If you're having trouble running the autograder, please contact the staff.
==============================================================================
"""
import bz2, base64
exec(bz2.decompress(base64.b64decode('QlpoOTFBWSZTWc9TWUgAOk1fgHAQfv///3////7////6YBzcOfaRd5kYNx69uwK9tTYSVnbNW8BesDoYHp6AHocjo0PR0oZSvTJUFbVqqg63TRKD2u44O2bAA94SSE0CGTJo0mRknpT2hlR5CNPKep5QHqHqaPKAaADTQTQETUymmTKQ/VM1MTYUPUyHqeg1B6gAAABpiIiIjJ6g9TTTJoaABoNAAAAA000AJNFIkEhigzUj0j1HqeoeoAAAAeoAAAPUONDQNGmRpo0yAxMEAANAaA0yAwJkCRIQAIAIAmmkxMj1Mk2gNR6SNHqaAMm1GPZ0B9w+cDIfSljGfYwop/0l1lT7GFQVn8tsnvof+aVRUQRBSI/2WooexlIxYIih2lj39u15YsyHGV+dknqkmQ6/5oZm+N2E8WypVgwGKKJ/ZGFIXMURYgknWJZhM1zVpcCjog70kjcIH6327U6abJ2bfd7u3mo59wvu6mX7Yu+l93bJnH5XEx10N4bKGDF03QJVMk1R/T9V0fLlw1vB4uLukDxp2SAPQAhVgLFBFVgKIkVFBWIKpNgxjYhsbG1b7c/pX0rZhiNXec/nB0S4cuuXZZCPKwktHyX+b7v0mfHHHTQ3tFTDRhJttjbfCAo8rtDGw4GIUpKNbYus5vi16LdFLNEGynTnlsilPZqvOTadXbibDVrwu0yceZhlVVWRVkO+RV19ATRYTqJyCFVWQ2whRUoF9uss1/zj3OPNzqKlTGoe7BzXug33v0Bju24nEmR0xlu0ufVbXTPUN/bDr8F5yWxqYTcoQSiAlWceG7V3AqlQJ1e1KCiXXRcA22eTcYV20aXXotiCSQQaeZRgam/HhhzuulVnMnpnhncyBtttNMxpZuYxbLL+1zZ/NazB3bNV+ZHvwldaRXXx3QV1NEFDzGrXP9bjG3bUkNpNon2VvNhL7Acq0cTSyCChQEohIBBDdYNZxflh+3CsHduIC6VaKlu6MDY4oeJ+nxYFJO5C0Ww4TV672eZq3RY4vwZKRftNd1Y29SduvtgXHOmc+wdXtHlH1oucM7cPTl3XveZeUcdmeTkON1T93Zx2BRmyPLf8YLm9h7piEIPV93x/BgseElmWFRdEJEn0avn2ycOjbPSUUTtj6mzcM0lNoOMuKh6S35Md1b9N3Flsk/qcw9Lm6Ol7VuIMwyYzuozm6vQ2b6CMvXwLtutOE5m0pnb8zBM2ZVLhjK2zieaclhy1U1uzMtURj1d0CSSL3SzT5iQuMJt5XGODhDQHQMwiGxKJwm9jgCO/HV/D6fml5/6+/UKzVGGeOkNoR+ROayL9tSnH33qkxk6Q4N673GCziPVtLt94x2PEDuw+r8b2/EDr5M/WZ8qzLEqikG2FZ59ufXvePHj6ue3nne+Z4aid/PMw1gx054wIjEixxaVG9YLnRqk1kiSIsCsoSvpuOaNvPwevfZ0ng77HSc5AYJS7e648IRgZmyYstMS9oMLAUPKqVBFldVFEYFKBZDxYoTJTE3wqixtZ3w72sMMzBEzmyDBkXK0J4TAgYbIxti95PVzJ3BeDub8zVknZQliU5xPCARcBb0kNcHMBXzR0kKl02mc557Dn92d17M9e/pj6p7Bsbvx9MiSnqVjTEW6rjv+pTEC7jq3hKEYMGJcB8XUGjklVVj3qicn8rZb85sai7HSqwGs9TD11AxguyJUltWeGdLbmMOMj2uw+4quR5GVApHowi2VFRT2HmoczEMlcds/Fv5ud28+Ovu26c80Dmo8fZ4nEzC8P48m1jsM7Th86kX39xp24FNAMyib9fLcfX6oGliWgYY6GOuMvurCwqX5kimw49c9TxZiw9Aw7Te4wMO2zM/gRBHHk2z2xYgAsp7JZ66aqdFewpHvEWoT3D8UOe22SDA02ztD0PHtUyXI3MmrOR46p0X11ygdrmwo5On0frZ+Vuoqr7GJaNQx4kPZlJSaiuKc+6j37lphVI4KKRcNPaxUJ8D2EEwdD3VqUt3tjcYJel31RYNtUWDw9+PfMLXgysljILlaFw2dt3m8HDz2Jw+E6LTuxOVjerwd4CjEBZXQmmVem0BWdRW0Zw71Gh1aHWdd+J0CsbYh/jDR8gHycInvjoiezrziyjjykAs7uOLjvk3pZ0tm6VsEKxvWBaSdWKGNkEZ2Fdzwa6vGE2EDOorrV0ILsDRjfilKqs6VV+6JWICr4VpSAlGx0vBlcqr5TuorOdKkUmbQIq9qLorirHzTR4ZUlWwuQxjUF3GuRd99UZDUE8mipck1hqcwPtHZfFJRUZqY3mmgMFbhl6HtED2wHQpMDoDkGKzJkwmK50Za68GErqsdTT6e+sb5BHAFmbtJplBLFNps3WVJTwlB8qWCEFjphDdZZOazUdfY70dDOA0dDCdJs10CA9wOBkzxrEQPdtC6UxucfYM9E6fC77l94HSV14uKshtzXZ7xVEqDTbfzjRoGlrtjsR6YerWBd402g1ot+GupYjsxpRwEZI1UaL4v8a+cqdV+a2W8sXdklESfCLr3u3mlxPAqLp3Q2Me2vu4W5tUOJEkVIdudqWOcZF9m1MwrMgM9OV8THvjVrik32rNtnnJ4OKUFm0QAsImOQPKpeiv5vjT0nVMZSBm0qYrqmmJSh8+dulNMA1KRwfUeiruBaXfIBFkDPUrIfl5/V/r/zbaBhkhtQBgxLwYRhQa97Hmp6r0PX6YehRK+fbODKXVbPFwbWPjxaBF3IPpxFL2+jw5amuDVQzYtdnVmSaI6qgIOgwoWNV9GGNlhbbYjJiotduTD904Z1la0sBiZKqktTEUDao9S0de+WpK7I6qDQbB3FCMkUoqQlA+wWCxiNDBUjQIqdptySGU7oyhnyMYCyzeM77s8ba2Nj1b30EJAjHl26/u+Xo78j691b04hGBBChzG5QQ2DhPhBTTPF5dZlu2zquKJYYKLkOHLbR4aVhsWk03MtTZTPEeN42nucj14ppGHbbShUZandKqdS1dSyjJmk2VoJkaDyFtGW8VzaFWobNhUBogMJTLSTGWhyWnKpqyq3OKbQRbJsolDUaQbyyqlQoMKirHSQHDYESQ04F/7p9F59X3RrEJAj9uMir4wfEQkCPNAeP7dXu/H9LfhEJAjw9dANe7wEJAjlvwwt+IQkCOvyEJAia/kISBGqv/7bsqu8tIbTYxnxgiICxBgjJ9n9Nh/owXJw/n7rsFv69zuT+p4zlaR4Tw1m4Uyq5KlUbaPdh4Zr0a3rnF5i8LYiSvMHkhlm4o3NRr3TKcOFLgw6aXRMsK92WVDnIckyqTG6xW2XD2rhBZy0rOnidHXV5jo3R4c6XiunHJ09DO0OMwTsp6VELECnQKusQNlVfglEGCC+2cpkjEHqunn57evW3i3WwiiqqrCiVVW0a2qeK6HbeNc9vgeW16e5Ho68BuCnaWlvVCopvQ5uca1oNGxWq+Th8lb+SnW410HOVw583x10HRc3nCNJw4jiISBHm/b+/Z9gIBK09P3yEhC2ef9RCQIqM7P6ezop9J7tv6iEgRfV/sISBE++v5c7x+0QkCMMpOO8QkCIh5x93LL9lBCQIqpuZKVfTAjb7O6lwhIEV512MNn7xCQIj4/eISBH0CEgRKj/sISBHyEJAjV8BCQIypv60eLbeDCPkz5T6oPB5Kh8CKj8Rz5TI9Gt5kWCzbG0gb1v7fPEUVR7vQ7FOAQLVUIZG6tQ1Byn5faBzt5U1lddA/JDqXV8yOq1fufKOsBjdVuJPg/w7b5MuI3krPkQW0LcCXlalnUjIvkSttg17f+BxA8Z7UcdsgPmyrZddiEJAj7ZPOanLjRKHmGdyNdXgZ0xtQXRkwJjYxQRcvzxFmjeDki5OY/cty5korR5MqpMnkBcik4pf+v6BIzJ2JbZgE7NRuJCAiCHVnZ1sCeg6TnOFVHnqBhcis8LLxhxT6SL8rmFi4hKHUsEDZ8GW9QPNhukAXFL0DKsUxjqrlhf72bzbEZW60rzwyNYaE0uRiX12+Ps/8tQFi32q0zke01GNAhq5XK/tjlfABvArPK0850CEgRPMLo0s5yJfYISBDKFrJm0iYV5nFjUhKGoDKoPBHS4qKlYGEwMf4SlwQGO1086VtquDNhu1HE+y57M7oU3xzQSYD7MAhpa1h+c9K2jddOaqULYEsFdpok41OcF7Lm5kQt8SBZLjK9Ncdix1TjrwQlKjQKGsKJS/ojbtAFGrQ4FKLYhoaYSIrQ6d3m4Lkt+9afL6+lE6G9AXiOpDc3HgJKYxMYxmQHI1CdBB27LJzuyGGlO7G+tg2HOpCyRS03VhyoZuxdVcwDpZ5aljnjW66CEgR0VazG6M+pT6/0jfOBzG4fotjSXqfZUqYzN3AWo6ahbPZ7rpqaKqn2ckLcKlAifEVeQqkBKsRDRKpmE7gKLZxYVDuZFab38KWAg5ZUsGkTFyYNUo2TudmEZRSZMsrwliY+4QkCLCbJFZCVa1g1nMCaUhe3wSzptsgMkp/2JW2okl21bZxR1vCSvkFOWYHFB0d/pEXiSOixGvu5j0XyGTQsJHenhQBqxcWvgyXhUhweOpOz8DMWFc8pD105VouPDM1llM0G7+lLNu8d9UhyUSalYlKUpqChEEYo0rUwqRG7G6wW0B0Ltj7MIR1FJOQhg3FCNVB7iqsyYfDoqu1W3fmSJ94i9eJoZckRyccVfhmfIHir8AyRAFQkoAJndElEuHvAQXYAvP3E+6oAK61BfvFnwGMp1JuhHPzANDENjQwE0MZz3WySl+TPn7O821+ycT/KK2h/H1CEgRl5iiePIrD5haBNE+87bDHsW2S8aiFBgVJapk+Mo9ZJE07KyCSR6RjTBseAb8h0Qep3PxfWmnc8Hz33ZYGQKvint6tQFin2iEgQ9jAGDtgPeh1SwS5suFMuH3C+iK9ZXICVYptG4Z7NdxsPQ0mtZCRCY/0EJAhyuzoEP2sCAoRBGWx8/SVKtlVqYIgh+jlRcWiJIleRD2OhwWDJizWiV8NYZQR0XbeePsvSLsxGXBfmISBGPDQO83pENv3NLS8NUFDO36KbU6wL0qu5NngfbatzQNiCaaXtaVQIMwCoErwWkzqaiaDVo/l1KNntPeVy1nOF1NmUZkTZwlxciWA6hjTIHTXdt2Y4+NgJYFiK4yGhtNsQMbGmh+oCh/GDGtGaQc32G7q6RX6ed96rsLkbQ/ZrkSBgPGA1F6VuzvS40pfbOw3aOWvCqwJHYg/EQkCMgWeb50z77j9iPWyGVDQmL3qk8vLhheuiva7FtAKlnsP4QRA5hxpBEgWUsEQgHn6Anv/DDHoHmMHllynzi4MMxaJvQkZpjEQQQhjSGMBGSB7dwqUovDkiIBilkRkhilBEkDqdLw4cgIhOUsBBkMBBAgY0CMcoSAIsR6tKmVtWThdQSG09dOPT10OQ4zl3Nqc1kpUrNxO5c8O4KtYu7clSXBUB32G7A0C7QrRNCkRajZKHLPGd08BLlsusawsZGLFqlBhhKKwYSrNbaFFLDFInPHkyRlciA3l42GxiDFpH+HrzReTVW2JtFuwwmTfQWFmKmus6rer1Y1HPIWzebm5HBDGkp6mBugpPv6/AtPueXg8vm1toOlttqNYQKpVzmtRgVVl9jNIbhawQQQ2EhXw0eGOrcQdGpGdIlxMqjYYl4DyGOIhuFlDZKQsFntsLwoVgisZThSXowfIDkD1JqGSYDoKvUlQmTA+iRUSQtlQG1EI42h2F+cim2ZLa4UjbRESAn6RCQI6MDuZs4WQezukkcaLHKMAJ61DlEF0KG0gaTAZG1jTGGmqL99VnIvL9mBLqXlFQZI6UsAGK3O5B1WHvsCbwEEVSTZl9eGx8C9fUa/ZfcM3wcAkgnx0URRREQVRGMiWluHcO3tlR0I0IrJQz8EENM4667Ed997jvic3EMnCigGkKmoLoGXTipmsJFoHDOY0ZQQISCQrb2mxXphpwzTy8FYDAGQ7lkCyr+LRmzBV7pu4c0SVIUiZyKDLbFpUGRCdVpRsTOKlkRpTKlkyJhKKSIabQ2QIxyrgCkBZYJhiZ7OzG63Sbc4vwPl9IesnYFYekPXOKMDhYGgFJRnXMlqGTaBFEB11kmV456zMhKpylDRAJsBg+kHI099MgtaFGZIssjPrJOQ0TISIRMIBYcwLL+XJ8RoNw1tXhhm2PxnxXYW11BRZpQ2jAqOUbMFQbYwzIVFGbcEpAVTiYySSIJqFQ2usbAaQmJGbAsaGkQ1G1oU0mnQ84Ue77frllO4QkCMEuHf6yR7JhC2BQY5dpv6+Bxs/3bYs0iw+YEfAFCDwrti6vYz+tK+rSOC3wpamBo0jlSkaMBsSJShI+pKgcrJHJeVdarBSZmF0cnVmyXyUdMGQKcnteEQmQ00Q3bRRCpkiYQSIu35B15VWJHJk/YtZq0LP0pOYG9er014VXhuR9tg5+b+h9P1v5fzk/HQfPx6ZzrS0uMbJUuEt1QJBd52WG0aJgEwHTIOoJdW6NrmicbK8rXpooaPHjiLNY3XKYCk2taMoLFF0tsqlBFZtKHn9PfXPE931/RP5H03pVXbhof4dnPboP59DU3gawGMIJAmNohpvvGwKRZT3Q+j6OjzSHg8BQYrBntx5ODzq2Sl6CrWi20KoluoJqKIUUAssIbLURkEEKaUh7/AIsvwe/ASXk2MNPWlFmdeBmsocHICIbk1miQEChBJSGsUagLV8OemN5rEle+E9VR7RCQQxuiF9e/IvswQqPubbV9yU9GebuzhIISYjbXbKphRqIX9hCQIuQeSS/azDFAX9wBO25YPIZIHYg6Mp1FItiC5GHgLMVOrA5pWImdofPcsVTGEku53ccqtQML/PSU5lEyoEoPWaqkUHemAMANVliAt7PWqXvVfvswvD8YDQJAQFjyAMm07/n+ywmUbdQipEZ+c8ZefKdPWLauHYBiB+CYzb4a1GqIqFBzrGAR8MV2LiTaI99BTyKi+lmWuKdPGvb299tlT3yfV3I6yqTwOrtRMi+ziqs65rs6OdsRyXQKXxOGdEuACNaIXJqtEAIh4TOWhNVFUYFLGcWnkMQxFQDiIDRQQQSkEIKFVeWmSsuCQtyVm3tfS54huIsGMYpBCqDYM9ONviOdlEWhhbPuQGa4BUSmfG3PwnheCsvgY0A2r+PqS036L6QWTFA+/8CI/M22MrZQhg+EiQRAmA5CA4xIIgc4jjEiRA5PmE4jW2sOB8DSUE0pHx+yNPI6UrCj5/gUvDinoTyiDGAcKUD5D5iUMCLOw6EiumAiJPvewFIwngsAQ+6W/dtST5RttZoyOu17DbxxTyIQ8WzkqT9BWtUqr2FT0QNsRe5hjLLlnwLdTCAbibirqqkRKK9KsXDDc7XW15pb424h6+lL1VO2WIQp0dPAON4TBZGpu+8E4JOBv2CEgQ3cieifqFJ+HVwAKyB6zHG+z3mwKsA0M7aBUhUQ02UJ9iw6qXo+9pEPLrYPuzxClt4BJhYkwL2MmkuTXcVVXoyUT1UPT0Wbuo27g3NMaCpBrmatuw5zm6GkiUZRIG5xPEVEh2smiQNFoiB1cztOKJJXuxD24mTbMWgwSkRsiY+YjSxOQATxMTBbi1WcbqBzmkp5alxzJQpn4CIz/iS8AdUsV0X9CGL1u91nOpD6GfxtNQhIEc+5SpKUldcbKW1yADoCsD2JVdLq7Y3j1+jfbyGX2lXJHVh0Gcfi02iAtL1q5W6rutGolLLswfWm9tfe8ryj+oQkCJ5Uw8ScsRhNfP0CEgRlVVwP5JWI6elKouvISoLO0JbC9LA+O3gISBE7BeTSYdXeeaOFclJOUKuk5Aq2gqCFSU0SaIZ0tc3KR81K6zyEJAhhUaB28ETL/dVDNPxMT/sQkCIUkbi9pPioSqKx0SHewXhK3tZxw7HfgOZfT3cs1EnX5U+S8vPzd+7cL9XvE3kMMXD/4u5IpwoSGeprKQA==')))