euler/ipython/EulerProblem027.ipynb

143 lines
4.4 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Euler Problem 27\n",
"\n",
"Euler discovered the remarkable quadratic formula:\n",
"\n",
"$n^2 + n + 41$\n",
"\n",
"It turns out that the formula will produce 40 primes for the consecutive integer values 0≤n≤39. However, when $n=40$, $40^2 + 40 + 41 = 40(40+1)+41$ is divisible by $41$, and certainly when $n=41,41^2+41+41$ is clearly divisible by 41.\n",
"\n",
"The incredible formula $n^279n+1601$ was discovered, which produces 80 primes for the consecutive values 0≤n≤79. The product of the coefficients, $79$ and $1601$, is $126479$.\n",
"\n",
"Considering quadratics of the form:\n",
"\n",
"$n^2 + an +b$, where |a|<1000 and |b|≤1000\n",
"\n",
"where |n| is the modulus/absolute value of n e.g. |11|=11 and |4|=4.\n",
"\n",
"Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n=0."
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"Okay, bruteforcing this complete thing is definitely hard. The interesting thing is that euler provided two examples. If we calculate the primes for both terms we see that there is a certain overlap. This indicates that there is a relation between the two. Sure enough if we put $n-40$ into the first term we get the following.\n",
"\n",
"$(n - 40)^2 + (n - 40) + 41 = n^2 - 80n + 1600 + n - 40 + 41 = n^2 - 79n +1601$\n",
"\n",
"Let's assume that all incredible formulas can be derived by inserting $(n - p)$ into the formula. Of course, what ever value we choose for p the resulting terms must not exceed the boundaries for a or b. We calculate the boundaries.\n",
"\n",
"$(n-p)^2 + (n-p) + 41 = n^2 + n(-2p + 1) + p^2 - p + 41$\n",
"\n",
"Where $(-2p + 1) = a$ and $p^2 -p + 41 = b$. We can now calulate the bounds for a:\n",
"\n",
"$-2p + 1 > -1000 \\rightarrow p < 500.5$\n",
"\n",
"$-2 p + 1 < 1000 \\rightarrow p > -499.5$\n",
"\n",
"And b:\n",
"\n",
"$p^2 - p + 41 <= 1000$\n",
"\n",
"$-30.472 < p < 31.472$\n",
"\n",
"$p^2 - p + 41 >= 1000$ True for $\\forall p \\in \\mathbb{N}$\n",
"\n",
"So now we only have to check for the values p in range(-30, 32). Alternatively, for the example $p = 40$ was used, maybe the next smaller value $p = 31$ yields the correct solution:\n",
"\n",
"$s = a\\times b = (-2 * 31 + 1) * (31^2 - 31 + 41) = -61 \\times 971 = -59231$"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"-59231"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from functools import lru_cache\n",
"\n",
"@lru_cache(maxsize=1000)\n",
"def is_prime(n):\n",
" if n < 2:\n",
" return False\n",
" from math import sqrt\n",
" for s in range(2, int(sqrt(n) + 1)):\n",
" if n % s == 0:\n",
" return False\n",
" if s * s > n:\n",
" return True\n",
" return True\n",
" \n",
"assert(is_prime(41) == True)\n",
"\n",
"def get_quadratic(n, p):\n",
" return n*n + n * (-2* p + 1) + p*p - p + 41\n",
"\n",
"n_max = 0\n",
"p_max = 0\n",
"\n",
"for p in range(-30, 32):\n",
" for n in range(0, 10000):\n",
" if not is_prime(get_quadratic(n, p)) and n > n_max:\n",
" n_max = n\n",
" p_max = p\n",
" break\n",
"\n",
"p = p_max\n",
"s = (-2 * p + 1) * (p*p - p + 41)\n",
"assert(s == -59231)\n",
"s"
]
}
],
"metadata": {
"completion_date": "Mon, 21 Aug 2017, 21:11",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.4"
},
"tags": [
"quadratic",
"primes",
"formula",
"brain"
]
},
"nbformat": 4,
"nbformat_minor": 0
}