euler/ipython/EulerProblem012.ipynb

67 lines
1.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Euler Problem 12\n",
"\n",
"The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be $1 + 2 + 3 + 4 + 5 + 6 + 7 = 28$. The first ten terms would be:\n",
"\n",
"$1, 3, 6, 10, 15, 21, 28, 36, 45, 55, \\dots$\n",
"\n",
"Let us list the factors of the first seven triangle numbers:\n",
"\n",
"~~~\n",
" 1: 1\n",
" 3: 1,3\n",
" 6: 1,2,3,6\n",
"10: 1,2,5,10\n",
"15: 1,3,5,15\n",
"21: 1,3,7,21\n",
"28: 1,2,4,7,14,28\n",
"~~~\n",
"\n",
"We can see that 28 is the first triangle number to have over five divisors.\n",
"\n",
"What is the value of the first triangle number to have over five hundred divisors?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"completion_date": "Sun, 31 Aug 2014, 17:07",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.4"
},
"tags": [
"triangular",
"number"
]
},
"nbformat": 4,
"nbformat_minor": 0
}