euler/python/e027.py
2017-08-23 10:01:41 +02:00

57 lines
1.2 KiB
Python

def get_primes_till(n):
square = lambda n: n * n
candiates = range(2, n + 1)
primes = []
while candiates:
prime = candiates[0]
primes.append(prime)
candiates = [c for c in candiates if c % prime != 0]
return primes
def get_coprime(n):
primes = get_primes_till(n)
for p in primes:
if n % p != 0:
return p
raise Exception("No coprime found for {}.".format(n))
def is_prime_fermat(n):
if n == 2:
return True
a = get_coprime(n)
if (a ** (n - 1) % n) != 1:
return False
else:
return True
def is_prime_deterministic(n):
pass
def is_prime(n):
if n == 2:
return True
if n < 2:
return False
if not is_prime_fermat(n):
return False
else:
return True
return is_prime_deterministic(n)
def get_length(a, b):
def formula(n):
return n*n + a*n + b
for n in range(99999):
if not is_prime(formula(n)):
return n
def bruteforce():
solution = None
options = [(get_length(a, b), a, b)
for a in get_primes_till(1000)
for b in get_primes_till(1000)]
print(max(options))
bruteforce()