euler/ipython/EulerProblem034.ipynb
2018-02-12 18:59:01 +01:00

102 lines
2.1 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Euler Problem 34\n",
"\n",
"145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145.\n",
"\n",
"Find the sum of all numbers which are equal to the sum of the factorial of their digits.\n",
"\n",
"Note: as 1! = 1 and 2! = 2 are not sums they are not included."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The algorithm for checking if a number is curious should be efficient. The more difficult thing is to select the upper bound for the brute force. It can be seen that $9 999 999 < 9! * 7$. Hence we can select $10^7$ as our bound."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from math import factorial\n",
"\n",
"def is_curious(n):\n",
" s = sum([factorial(int(d)) for d in str(n)])\n",
" return n == s\n",
"\n",
"assert(is_curious(145) == True)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"s = sum([n for n in range(3, 10**7) if is_curious(n)])"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"40730"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"assert(s == 40730)\n",
"s"
]
}
],
"metadata": {
"completion_date": "Mon, 12 Feb 2018, 17:57",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.4"
},
"tags": [
"factorial",
"brute force"
]
},
"nbformat": 4,
"nbformat_minor": 0
}