https://projecteuler.net/problem=53
There are exactly ten ways of selecting three from five, 12345:
$123, 124, 125, 134, 135, 145, 234, 235, 245, 345$
In combinatorics, we use the notation, 5C3 = 10.
In general,
$nCr = \frac{n!}{r!(n−r)!}$, where r ≤ n, n! = n×(n−1)×...×3×2×1, and 0! = 1.
It is not until n = 23, that a value exceeds one-million: 23C10 = 1144066.
How many, not necessarily distinct, values of nCr, for 1 ≤ n ≤ 100, are greater than one-million?
import math
def combinations_naiv(n, r):
return math.factorial(n) // (math.factorial(r) * math.factorial(n - r))
assert(combinations_naiv(5, 3) == 10)
assert(combinations_naiv(23, 10) == 1144066)
assert(combinations_naiv(20, 20) == 1)
count = 0
for n in range (1, 101):
for r in range(1, n + 1):
if combinations_naiv(n, r) > 10**6:
count += 1
s = count
print(s)
assert(s == 4075)