https://projecteuler.net/problem=64
The first ten continued fraction representations of (irrational) square roots are:
√2=[1;(2)], period=1
√3=[1;(1,2)], period=2
√5=[2;(4)], period=1
√6=[2;(2,4)], period=2
√7=[2;(1,1,1,4)], period=4
√8=[2;(1,4)], period=2
√10=[3;(6)], period=1
√11=[3;(3,6)], period=2
√12= [3;(2,6)], period=2
√13=[3;(1,1,1,1,6)], period=5
Exactly four continued fractions, for N ≤ 13, have an odd period.
How many continued fractions for N ≤ 10000 have an odd period?
import math
def get_floor_sqrt(n):
return math.floor(math.sqrt(n))
assert(get_floor_sqrt(5) == 2)
assert(get_floor_sqrt(23) == 4)
def next_expansion(current_a, current_nominator, current_denominator, original_number):
# Less typing
cn = current_nominator
cd = current_denominator
# Step 1: Multiply the fraction so that we can use the third binomial formula.
# Make sure we can reduce the nominator.
assert((original_number - cd * cd) % cn == 0)
# The new nominator is the denominator since we multiply with (x + cd) and then
# reduce the previous nominator.
# The new denominator is calculated by applying the third binomial formula and
# then by divided by the previous nominator.
cn, cd = cd, (original_number - cd * cd) // cn
# Step 2: Calculate the next a by finding the next floor square root.
next_a = math.floor((math.sqrt(original_number) + cn) // cd)
# Step 3: Remove next a from the fraction by substracting it.
cn = cn - next_a * cd
cn *= -1
return next_a, cn, cd
next_expansion(1, 7, 3, 23)
def get_continued_fraction_sequence(n):
# If number is a square number we return it.
floor_sqrt = get_floor_sqrt(n)
if n == floor_sqrt * floor_sqrt:
return ((floor_sqrt), [])
# Otherwise, we calculate the next expansion till we
# encounter a step a second time.
a = floor_sqrt
cn = a
cd = 1
sequence = []
previous_steps = []
while not (a, cn, cd) in previous_steps :
#print("a: {} cn: {} cd: {}".format(a, cn, cd))
previous_steps.append((a, cn, cd))
a, cn, cd = next_expansion(a, cd, cn, n)
sequence.append(a)
sequence.pop()
return ((floor_sqrt), sequence)
assert(get_continued_fraction_sequence(1) == ((1), []))
assert(get_continued_fraction_sequence(4) == ((2), []))
assert(get_continued_fraction_sequence(25) == ((5), []))
assert(get_continued_fraction_sequence(2) == ((1), [2]))
assert(get_continued_fraction_sequence(3) == ((1), [1,2]))
assert(get_continued_fraction_sequence(5) == ((2), [4]))
assert(get_continued_fraction_sequence(13) == ((3), [1,1,1,1,6]))
def get_period(n):
_, sequence = get_continued_fraction_sequence(n)
return len(sequence)
assert(get_period(23) == 4)
s = len([n for n in range(1, 10001) if get_period(n) % 2 != 0])
print(s)
assert(s == 1322)