{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Euler Problem 10\n", "\n", "The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.\n", "\n", "Find the sum of all the primes below two million." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Okay, reuse prime generator from 7 and go." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "61.8695481220002\n", "142913828922\n" ] } ], "source": [ "import timeit\n", "\n", "def is_prime(n, smaller_primes):\n", " for s in smaller_primes:\n", " if n % s == 0:\n", " return False\n", " if s * s > n:\n", " return True\n", " return True\n", "\n", "def prime_generator_function():\n", " primes = [2, 3, 5, 7]\n", " for p in primes:\n", " yield p\n", " while True:\n", " p += 2\n", " if is_prime(p, primes):\n", " primes.append(p)\n", " yield p\n", " \n", "def brute_force(): \n", " ps = prime_generator_function()\n", " s = 0\n", " p = next(ps)\n", " while p < 2000000:\n", " s += p\n", " p = next(ps)\n", " return s\n", " \n", "print(timeit.timeit(brute_force, number=10))\n", "assert(brute_force() == 142913828922)\n", "print(brute_force())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Okay, here it may actually be way smarter to use a sieve. We implent it because the old one was shitty. Okay, I am actually interested in the time difference. So we use the old one first and then implement the optimization." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def get_primes_smaller(number):\n", " primes = []\n", " prospects = [n for n in range(2, number)]\n", " while prospects:\n", " p = prospects[0]\n", " prospects = [x for x in prospects if x % p != 0]\n", " primes.append(p)\n", " return primes\n", "\n", "def brute_force():\n", " return sum(get_primes_smaller(2000000))\n", "\n", "#print(timeit.timeit(brute_force, number=1))\n", "#print(brute_force())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This did not even terminate. We optimize the sieve by stopping when $p^2 > number$." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "74.5315607270004\n", "142913828922\n" ] } ], "source": [ "def sieve_of_eratosthenes(number):\n", " primes = []\n", " prospects = [n for n in range(2, number)]\n", " while prospects:\n", " p = prospects[0]\n", " prospects = [x for x in prospects if x % p != 0]\n", " primes.append(p)\n", " if p * p > number:\n", " break\n", " return primes + prospects\n", "\n", "def brute_force():\n", " return sum(sieve_of_eratosthenes(2000000))\n", "\n", "assert(sieve_of_eratosthenes(10) == [2, 3, 5, 7,])\n", "print(timeit.timeit(brute_force, number=10))\n", "assert(brute_force() == 142913828922)\n", "print(brute_force())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Okay, I honestly did not expect this to be slower than our generator. Gotta keep that in mind for future prime related problems." ] } ], "metadata": { "completion_date": "Wed, 20 Aug 2014, 20:28", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.4" }, "tags": [ "primes", "brute force", "timeit" ] }, "nbformat": 4, "nbformat_minor": 0 }