{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Powerful digit counts (Euler Problem 63)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "The 5-digit number, 16807=$7^5$, is also a fifth power. Similarly, the 9-digit number, 134217728=$8^9$, is a ninth power.\n", "\n", "How many n-digit positive integers exist which are also an nth power?" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "def get_digit_count(n):\n", " if n < 10:\n", " return 1\n", " c = 0\n", " while n:\n", " n //= 10\n", " c += 1\n", " return c\n", "\n", "assert(get_digit_count(0) == 1)\n", "assert(get_digit_count(1) == 1)\n", "assert(get_digit_count(33) == 2)\n", "assert(get_digit_count(100) == 3)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "49\n" ] } ], "source": [ "def get_n_digit_positive_integers(n):\n", " r = []\n", " i = 1\n", " while True:\n", " if get_digit_count(i ** n) == n:\n", " r.append(i ** n)\n", " if get_digit_count(i ** n) > n:\n", " return r\n", " i += 1\n", "\n", "s = sum([len(get_n_digit_positive_integers(n)) for n in range(1, 1000)])\n", "print(s)\n", "assert(s == 49)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "completion_date": "Sun, 6 Jan 2019, 06:17", "kernelspec": { "display_name": "Python 3", "language": "python3.6", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" }, "tags": [ "powers" ] }, "nbformat": 4, "nbformat_minor": 2 }