Hence the sequence of the first ten convergents for √2 are:
1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, ...
What is most surprising is that the important mathematical constant,
e = [2; 1,2,1, 1,4,1, 1,6,1 , ... , 1,2k,1, ...].
The first ten terms in the sequence of convergents for e are:
2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536, ...
The sum of digits in the numerator of the 10th convergent is 1+4+5+7=17.
Find the sum of digits in the numerator of the 100th convergent of the continued fraction for e.
def gcd(a, b):
if b > a:
a, b = b, a
while a % b != 0:
a, b = b, a % b
return b
def add_fractions(n1, d1, n2, d2):
d = d1 * d2
n1 = n1 * (d // d1)
n2 = n2 * (d // d2)
n = n1 + n2
p = gcd(n, d)
return (n // p, d // p)
def next_expansion(previous_numerator, previous_denumerator, value):
if previous_numerator == 0:
return (value, 1)
return add_fractions(previous_denumerator, previous_numerator, value, 1)
e_sequence = [2] + [n for i in range(2, 1000, 2) for n in (1, i, 1)]
n, d = 0, 1
for i in range(100, 0, -1):
n, d = next_expansion(n, d, e_sequence[i - 1])
s = sum([int(l) for l in str(n)])
print(s)
assert(s == 272)