{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Euler Problem 003\n", "\n", "The prime factors of 13195 are 5, 7, 13 and 29.\n", "\n", "What is the largest prime factor of the number 600851475143?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We start by writing a function which calculates all primes till a certain value using the Sieve of Eratosthenes." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def get_primes_smaller(number):\n", " primes = []\n", " prospects = [n for n in range(2, number)]\n", " while prospects:\n", " p = prospects[0]\n", " prospects = [x for x in prospects if x % p != 0]\n", " primes.append(p)\n", " return primes\n", "\n", "assert(get_primes_smaller(0) == [])\n", "assert(get_primes_smaller(10) == [2, 3, 5, 7,])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we create a function which does prime factorization. It is very important that we only test primes smaller than the squre root. Otherwise the complexity becomes too big." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import math\n", "\n", "def get_prime_factors(number):\n", " possible_factors = get_primes_smaller(math.ceil(math.sqrt(number)))\n", " remainder = number\n", " factors = []\n", " for p in possible_factors:\n", " while remainder % p == 0:\n", " remainder /= p\n", " factors.append(p)\n", " if remainder == 1:\n", " break\n", " if remainder != 1:\n", " factors.append(remainder)\n", " return factors\n", "\n", "assert(get_prime_factors(7) == [7])\n", "assert(get_prime_factors(12) == [2, 2, 3]) \n", "assert(get_prime_factors(88) == [2, 2, 2, 11]) \n", "assert(get_prime_factors(13195) == [5, 7, 13, 29])\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can go ahead an brute force the solution." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6857\n" ] } ], "source": [ "def get_largest_prime(number):\n", " return get_prime_factors(number)[-1]\n", "\n", "assert(get_largest_prime(13195) == 29)\n", "#print(get_largest_prime(600851475143))\n", "print(6857) # computed the previously but remove it so that we can reexecute the complete kernel" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Okay, actually we can brute force, but it is really slow. A better solution is to write a prime number generator which calculates the next number on demand." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6857\n" ] } ], "source": [ "def is_prime(n, smaller_primes):\n", " for s in smaller_primes:\n", " if n % s == 0:\n", " return False\n", " if s * s > n:\n", " return True\n", " return True\n", "\n", "def prime_generator_function():\n", " primes = [2, 3, 5, 7]\n", " for p in primes:\n", " yield p\n", " while True:\n", " p += 2\n", " if is_prime(p, primes):\n", " primes.append(p)\n", " yield p\n", " \n", "def get_prime_factors(number):\n", " prime_generator = prime_generator_function()\n", " remainder = number\n", " factors = []\n", " for p in prime_generator:\n", " while remainder % p == 0:\n", " remainder /= p\n", " factors.append(p)\n", " if remainder == 1 or p * p > number:\n", " break\n", " if remainder != 1:\n", " factors.append(remainder)\n", " return factors\n", "\n", "print(get_largest_prime(600851475143))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we go. Obviously much better than precalculation primes that we never need." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.4" }, "tags": [ "prime" ] }, "nbformat": 4, "nbformat_minor": 1 }