{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Euler Problem 29\n", "\n", "Consider all integer combinations of ab for 2 ≤ a ≤ 5 and 2 ≤ b ≤ 5:\n", "\n", "$2^2=4, 2^3=8, 2^4=16, 2^5=32$\n", "\n", "$3^2=9, 3^3=27, 3^4=81, 3^5=243$\n", "\n", "$4^2=16, 4^3=64, 4^4=256, 4^5=1024$\n", "\n", "$5^2=25, 5^3=125, 5^4=625, 5^5=3125$\n", "\n", "If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:\n", "\n", "$4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125$\n", "\n", "How many distinct terms are in the sequence generated by $a^b$ for $2 ≤ a ≤ 100$ and $2 ≤ b ≤ 100$?" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "9183\n" ] } ], "source": [ "s = len(set([a**b for a in range(2, 101) for b in range(2, 101)]))\n", "assert(s == 9183)\n", "print(s)" ] } ], "metadata": { "completion_date": "Fri, 25 Aug 2017, 10:03", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.4" }, "tags": [ "distinct", "powers" ] }, "nbformat": 4, "nbformat_minor": 2 }