Added solutions 13 and 14 for ipython.

This commit is contained in:
Felix Martin 2018-02-05 16:00:01 +01:00
parent b3a5bfac52
commit ed3f4d3464
2 changed files with 433 additions and 0 deletions

271
ipython/EulerProblem013.ipynb Executable file
View File

@ -0,0 +1,271 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Work out the first ten digits of the sum of the following one-hundred 50-digit numbers.\n",
"\n",
"~~~\n",
"37107287533902102798797998220837590246510135740250\n",
"46376937677490009712648124896970078050417018260538\n",
"74324986199524741059474233309513058123726617309629\n",
"91942213363574161572522430563301811072406154908250\n",
"23067588207539346171171980310421047513778063246676\n",
"89261670696623633820136378418383684178734361726757\n",
"28112879812849979408065481931592621691275889832738\n",
"44274228917432520321923589422876796487670272189318\n",
"47451445736001306439091167216856844588711603153276\n",
"70386486105843025439939619828917593665686757934951\n",
"62176457141856560629502157223196586755079324193331\n",
"64906352462741904929101432445813822663347944758178\n",
"92575867718337217661963751590579239728245598838407\n",
"58203565325359399008402633568948830189458628227828\n",
"80181199384826282014278194139940567587151170094390\n",
"35398664372827112653829987240784473053190104293586\n",
"86515506006295864861532075273371959191420517255829\n",
"71693888707715466499115593487603532921714970056938\n",
"54370070576826684624621495650076471787294438377604\n",
"53282654108756828443191190634694037855217779295145\n",
"36123272525000296071075082563815656710885258350721\n",
"45876576172410976447339110607218265236877223636045\n",
"17423706905851860660448207621209813287860733969412\n",
"81142660418086830619328460811191061556940512689692\n",
"51934325451728388641918047049293215058642563049483\n",
"62467221648435076201727918039944693004732956340691\n",
"15732444386908125794514089057706229429197107928209\n",
"55037687525678773091862540744969844508330393682126\n",
"18336384825330154686196124348767681297534375946515\n",
"80386287592878490201521685554828717201219257766954\n",
"78182833757993103614740356856449095527097864797581\n",
"16726320100436897842553539920931837441497806860984\n",
"48403098129077791799088218795327364475675590848030\n",
"87086987551392711854517078544161852424320693150332\n",
"59959406895756536782107074926966537676326235447210\n",
"69793950679652694742597709739166693763042633987085\n",
"41052684708299085211399427365734116182760315001271\n",
"65378607361501080857009149939512557028198746004375\n",
"35829035317434717326932123578154982629742552737307\n",
"94953759765105305946966067683156574377167401875275\n",
"88902802571733229619176668713819931811048770190271\n",
"25267680276078003013678680992525463401061632866526\n",
"36270218540497705585629946580636237993140746255962\n",
"24074486908231174977792365466257246923322810917141\n",
"91430288197103288597806669760892938638285025333403\n",
"34413065578016127815921815005561868836468420090470\n",
"23053081172816430487623791969842487255036638784583\n",
"11487696932154902810424020138335124462181441773470\n",
"63783299490636259666498587618221225225512486764533\n",
"67720186971698544312419572409913959008952310058822\n",
"95548255300263520781532296796249481641953868218774\n",
"76085327132285723110424803456124867697064507995236\n",
"37774242535411291684276865538926205024910326572967\n",
"23701913275725675285653248258265463092207058596522\n",
"29798860272258331913126375147341994889534765745501\n",
"18495701454879288984856827726077713721403798879715\n",
"38298203783031473527721580348144513491373226651381\n",
"34829543829199918180278916522431027392251122869539\n",
"40957953066405232632538044100059654939159879593635\n",
"29746152185502371307642255121183693803580388584903\n",
"41698116222072977186158236678424689157993532961922\n",
"62467957194401269043877107275048102390895523597457\n",
"23189706772547915061505504953922979530901129967519\n",
"86188088225875314529584099251203829009407770775672\n",
"11306739708304724483816533873502340845647058077308\n",
"82959174767140363198008187129011875491310547126581\n",
"97623331044818386269515456334926366572897563400500\n",
"42846280183517070527831839425882145521227251250327\n",
"55121603546981200581762165212827652751691296897789\n",
"32238195734329339946437501907836945765883352399886\n",
"75506164965184775180738168837861091527357929701337\n",
"62177842752192623401942399639168044983993173312731\n",
"32924185707147349566916674687634660915035914677504\n",
"99518671430235219628894890102423325116913619626622\n",
"73267460800591547471830798392868535206946944540724\n",
"76841822524674417161514036427982273348055556214818\n",
"97142617910342598647204516893989422179826088076852\n",
"87783646182799346313767754307809363333018982642090\n",
"10848802521674670883215120185883543223812876952786\n",
"71329612474782464538636993009049310363619763878039\n",
"62184073572399794223406235393808339651327408011116\n",
"66627891981488087797941876876144230030984490851411\n",
"60661826293682836764744779239180335110989069790714\n",
"85786944089552990653640447425576083659976645795096\n",
"66024396409905389607120198219976047599490197230297\n",
"64913982680032973156037120041377903785566085089252\n",
"16730939319872750275468906903707539413042652315011\n",
"94809377245048795150954100921645863754710598436791\n",
"78639167021187492431995700641917969777599028300699\n",
"15368713711936614952811305876380278410754449733078\n",
"40789923115535562561142322423255033685442488917353\n",
"44889911501440648020369068063960672322193204149535\n",
"41503128880339536053299340368006977710650566631954\n",
"81234880673210146739058568557934581403627822703280\n",
"82616570773948327592232845941706525094512325230608\n",
"22918802058777319719839450180888072429661980811197\n",
"77158542502016545090413245809786882778948721859617\n",
"72107838435069186155435662884062257473692284509516\n",
"20849603980134001723930671666823555245252804609722\n",
"53503534226472524250874054075591789781264330331690\n",
"~~~"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Straight forward. No big deal."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5537376230\n"
]
}
],
"source": [
"numbers_string = \"\"\"\n",
"37107287533902102798797998220837590246510135740250\n",
"46376937677490009712648124896970078050417018260538\n",
"74324986199524741059474233309513058123726617309629\n",
"91942213363574161572522430563301811072406154908250\n",
"23067588207539346171171980310421047513778063246676\n",
"89261670696623633820136378418383684178734361726757\n",
"28112879812849979408065481931592621691275889832738\n",
"44274228917432520321923589422876796487670272189318\n",
"47451445736001306439091167216856844588711603153276\n",
"70386486105843025439939619828917593665686757934951\n",
"62176457141856560629502157223196586755079324193331\n",
"64906352462741904929101432445813822663347944758178\n",
"92575867718337217661963751590579239728245598838407\n",
"58203565325359399008402633568948830189458628227828\n",
"80181199384826282014278194139940567587151170094390\n",
"35398664372827112653829987240784473053190104293586\n",
"86515506006295864861532075273371959191420517255829\n",
"71693888707715466499115593487603532921714970056938\n",
"54370070576826684624621495650076471787294438377604\n",
"53282654108756828443191190634694037855217779295145\n",
"36123272525000296071075082563815656710885258350721\n",
"45876576172410976447339110607218265236877223636045\n",
"17423706905851860660448207621209813287860733969412\n",
"81142660418086830619328460811191061556940512689692\n",
"51934325451728388641918047049293215058642563049483\n",
"62467221648435076201727918039944693004732956340691\n",
"15732444386908125794514089057706229429197107928209\n",
"55037687525678773091862540744969844508330393682126\n",
"18336384825330154686196124348767681297534375946515\n",
"80386287592878490201521685554828717201219257766954\n",
"78182833757993103614740356856449095527097864797581\n",
"16726320100436897842553539920931837441497806860984\n",
"48403098129077791799088218795327364475675590848030\n",
"87086987551392711854517078544161852424320693150332\n",
"59959406895756536782107074926966537676326235447210\n",
"69793950679652694742597709739166693763042633987085\n",
"41052684708299085211399427365734116182760315001271\n",
"65378607361501080857009149939512557028198746004375\n",
"35829035317434717326932123578154982629742552737307\n",
"94953759765105305946966067683156574377167401875275\n",
"88902802571733229619176668713819931811048770190271\n",
"25267680276078003013678680992525463401061632866526\n",
"36270218540497705585629946580636237993140746255962\n",
"24074486908231174977792365466257246923322810917141\n",
"91430288197103288597806669760892938638285025333403\n",
"34413065578016127815921815005561868836468420090470\n",
"23053081172816430487623791969842487255036638784583\n",
"11487696932154902810424020138335124462181441773470\n",
"63783299490636259666498587618221225225512486764533\n",
"67720186971698544312419572409913959008952310058822\n",
"95548255300263520781532296796249481641953868218774\n",
"76085327132285723110424803456124867697064507995236\n",
"37774242535411291684276865538926205024910326572967\n",
"23701913275725675285653248258265463092207058596522\n",
"29798860272258331913126375147341994889534765745501\n",
"18495701454879288984856827726077713721403798879715\n",
"38298203783031473527721580348144513491373226651381\n",
"34829543829199918180278916522431027392251122869539\n",
"40957953066405232632538044100059654939159879593635\n",
"29746152185502371307642255121183693803580388584903\n",
"41698116222072977186158236678424689157993532961922\n",
"62467957194401269043877107275048102390895523597457\n",
"23189706772547915061505504953922979530901129967519\n",
"86188088225875314529584099251203829009407770775672\n",
"11306739708304724483816533873502340845647058077308\n",
"82959174767140363198008187129011875491310547126581\n",
"97623331044818386269515456334926366572897563400500\n",
"42846280183517070527831839425882145521227251250327\n",
"55121603546981200581762165212827652751691296897789\n",
"32238195734329339946437501907836945765883352399886\n",
"75506164965184775180738168837861091527357929701337\n",
"62177842752192623401942399639168044983993173312731\n",
"32924185707147349566916674687634660915035914677504\n",
"99518671430235219628894890102423325116913619626622\n",
"73267460800591547471830798392868535206946944540724\n",
"76841822524674417161514036427982273348055556214818\n",
"97142617910342598647204516893989422179826088076852\n",
"87783646182799346313767754307809363333018982642090\n",
"10848802521674670883215120185883543223812876952786\n",
"71329612474782464538636993009049310363619763878039\n",
"62184073572399794223406235393808339651327408011116\n",
"66627891981488087797941876876144230030984490851411\n",
"60661826293682836764744779239180335110989069790714\n",
"85786944089552990653640447425576083659976645795096\n",
"66024396409905389607120198219976047599490197230297\n",
"64913982680032973156037120041377903785566085089252\n",
"16730939319872750275468906903707539413042652315011\n",
"94809377245048795150954100921645863754710598436791\n",
"78639167021187492431995700641917969777599028300699\n",
"15368713711936614952811305876380278410754449733078\n",
"40789923115535562561142322423255033685442488917353\n",
"44889911501440648020369068063960672322193204149535\n",
"41503128880339536053299340368006977710650566631954\n",
"81234880673210146739058568557934581403627822703280\n",
"82616570773948327592232845941706525094512325230608\n",
"22918802058777319719839450180888072429661980811197\n",
"77158542502016545090413245809786882778948721859617\n",
"72107838435069186155435662884062257473692284509516\n",
"20849603980134001723930671666823555245252804609722\n",
"53503534226472524250874054075591789781264330331690\n",
"\"\"\"\n",
"\n",
"numbers = [int(n) for n in numbers_string.split('\\n') if n]\n",
"numbers_sum = sum(numbers)\n",
"first_ten_digits = str(numbers_sum)[:10]\n",
"assert(first_ten_digits == \"5537376230\")\n",
"print(first_ten_digits)\n"
]
}
],
"metadata": {
"completion_date": "Sun, 31 Aug 2014, 19:03",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
},
"tags": [
"brute force",
"sum"
]
},
"nbformat": 4,
"nbformat_minor": 2
}

162
ipython/EulerProblem014.ipynb Executable file
View File

@ -0,0 +1,162 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Euler Problem 14\n",
"\n",
"The following iterative sequence is defined for the set of positive integers:\n",
"\n",
"n → n/2 (n is even)\n",
"n → 3n + 1 (n is odd)\n",
"\n",
"Using the rule above and starting with 13, we generate the following sequence:\n",
"\n",
"$13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1$\n",
"\n",
"It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.\n",
"\n",
"Which starting number, under one million, produces the longest chain?\n",
"\n",
"NOTE: Once the chain starts the terms are allowed to go above one million."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"I would go for a recursive function with a cache here. This should give us good performance with acceptable memory footprint."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from functools import lru_cache\n",
"from collections import deque\n",
"\n",
"@lru_cache(maxsize=11000000)\n",
"def get_collatz_sequence(n):\n",
" if n == 1:\n",
" return deque([1])\n",
" ds = get_collatz_sequence(n // 2) if n % 2 == 0 else get_collatz_sequence(3 * n + 1)\n",
" ds.appendleft(n)\n",
" return ds\n",
"\n",
"assert(list(get_collatz_sequence(13)) == [13, 40, 20, 10, 5, 16, 8, 4, 2, 1])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Isn't this a beautiful solution? We need a deque to appendleft. Of course, we could also use a regular list and reverse the result, but it is nicer to get the correct solution out right away. Now we simply force the solution."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Okay, we need a loop.\n"
]
}
],
"source": [
"try:\n",
" s = max([(len(get_collatz_sequence(i)), i) for i in range(1000000)])\n",
" print(s)\n",
" assert(s == 837799)\n",
"except RecursionError:\n",
" print(\"Okay, we need a loop.\")\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"11.4885111964837\n",
"837799\n"
]
}
],
"source": [
"cache = {}\n",
"\n",
"def get_collatz_sequence(n):\n",
" global cache\n",
" orig_n = n\n",
" cs = []\n",
" while n != 1:\n",
" if n in cache:\n",
" cs = cs + cache[n]\n",
" cache[orig_n] = cs\n",
" return cs\n",
" cs.append(n)\n",
" n = n // 2 if n % 2 == 0 else 3 * n + 1\n",
" cs.append(n)\n",
" for i in range(len(cs)):\n",
" cache[cs[i]] = cs[i:]\n",
" return cs\n",
"\n",
"assert(list(get_collatz_sequence(13)) == [13, 40, 20, 10, 5, 16, 8, 4, 2, 1])\n",
"\n",
"def brute_force():\n",
" return max([(len(get_collatz_sequence(i)), i) for i in range(1, 1000000)])[1]\n",
"\n",
"s = brute_force()\n",
"assert(s == 837799)\n",
"\n",
"import timeit\n",
"print(timeit.timeit(brute_force, number=10))\n",
"print(brute_force())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we go. Takes some time. We could optimize by caching only the length and not the complete list."
]
}
],
"metadata": {
"completion_date": "Sun, 31 Aug 2014, 19:45",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
},
"tags": [
"collatz",
"cache",
"deque"
]
},
"nbformat": 4,
"nbformat_minor": 2
}