euler/python/e135.py

38 lines
972 B
Python
Raw Normal View History

2024-04-28 20:33:46 +02:00
def euler_135():
n = 10**7
threshold = 10**6
lookup = {i: 0 for i in range(1, threshold)}
firstpositivestart = 1
for x in range(1, n):
firstpositive = False
for dxy in range(firstpositivestart, x // 2 + 1):
z = x - 2 * dxy
if z <= 0:
break
y = x - dxy
xyz = x*x - y*y - z*z
if xyz <= 0:
continue
# Start when xyz is already greater than 0.
if not firstpositive:
firstpositivestart = dxy
firstpositive = True
# If xyz is greater than threshold there are no more solutions.
if xyz >= threshold:
break
lookup[xyz] += 1
r = 0
for _, v in lookup.items():
if v == 10:
r += 1
return r
if __name__ == "__main__":
solution = euler_135()
print("e135.py: " + str(solution))
assert solution == 4989