euler/python/e094.py

95 lines
2.3 KiB
Python
Raw Normal View History

2021-04-27 03:02:55 +02:00
def odd(n):
return n % 2 == 1
def is_square(n):
""" From the internet. I should implement my own version of this. """
## Trivial checks
if type(n) != int: ## integer
return False
if n < 0: ## positivity
return False
if n == 0: ## 0 pass
return True
## Reduction by powers of 4 with bit-logic
while n&3 == 0:
n=n>>2
## Simple bit-logic test. All perfect squares, in binary,
## end in 001, when powers of 4 are factored out.
if n&7 != 1:
return False
if n==1:
return True ## is power of 4, or even power of 2
## Simple modulo equivalency test
c = n%10
if c in {3, 7}:
return False ## Not 1,4,5,6,9 in mod 10
if n % 7 in {3, 5, 6}:
return False ## Not 1,2,4 mod 7
if n % 9 in {2,3,5,6,8}:
return False
if n % 13 in {2,5,6,7,8,11}:
return False
## Other patterns
if c == 5: ## if it ends in a 5
if (n//10)%10 != 2:
return False ## then it must end in 25
if (n//100)%10 not in {0,2,6}:
return False ## and in 025, 225, or 625
if (n//100)%10 == 6:
if (n//1000)%10 not in {0,5}:
return False ## that is, 0625 or 5625
else:
if (n//10)%4 != 0:
return False ## (4k)*10 + (1,9)
## Babylonian Algorithm. Finding the integer square root.
## Root extraction.
s = (len(str(n))-1) // 2
x = (10**s) * 4
A = {x, n}
while x * x != n:
x = (x + (n // x)) >> 1
if x in A:
return False
A.add(x)
return True
def euler_094():
n_max = 10 ** 9
n, total_peri = 2, 0
while n < n_max:
n += 2
for b2, c in [(n, n + 1), (n, n - 1)]:
b = b2 // 2
a_squared = c * c - b * b
if not is_square(a_squared):
continue
peri = 2 * c + b2
# print("b2={} c={} peri={}".format(b2, c, peri))
if peri > n_max:
return total_peri
total_peri += peri
if b2 > 10000:
n = int(n * 3.725) - 5
if odd(n):
n -= 1
if __name__ == "__main__":
solution = euler_094()
print("e094.py: " + str(solution))
assert(solution == 518408346)