euler/python/e061.py

60 lines
1.7 KiB
Python
Raw Normal View History

def get_four_digit_numbers(function):
r = []
n = 1
f = function
while f(n) < 10000:
if f(n) > 999:
r.append(f(n))
n += 1
return r
def search_solution(aggregator, polygonals):
if not polygonals:
if is_cyclic(aggregator[-1], aggregator[0]):
return aggregator
else:
return []
if not aggregator:
for polygonal in polygonals:
for number in polygonal:
aggregator.append(number)
s = search_solution(
aggregator, [p for p in polygonals if p != polygonal])
if s:
return s
aggregator.pop()
for polygonal in polygonals:
for number in polygonal:
if is_cyclic(aggregator[-1], number) and number not in aggregator:
aggregator.append(number)
s = search_solution(
aggregator, [p for p in polygonals if p != polygonal])
if s:
return s
aggregator.pop()
return []
def is_cyclic(a, b):
return str(a)[-2:] == str(b)[:2]
2019-07-18 03:29:59 +02:00
def euler_061():
triangles = get_four_digit_numbers(lambda n: n * (n + 1) // 2)
squares = get_four_digit_numbers(lambda n: n**2)
pentas = get_four_digit_numbers(lambda n: n * (3 * n - 1) // 2)
hexas = get_four_digit_numbers(lambda n: n * (2 * n - 1))
heptas = get_four_digit_numbers(lambda n: n * (5 * n - 3) // 2)
octas = get_four_digit_numbers(lambda n: n * (3 * n - 2))
s = search_solution([], [triangles, squares, pentas, hexas, heptas, octas])
s = sum(s)
return s
2019-07-18 03:29:59 +02:00
if __name__ == "__main__":
print("e061.py: " + str(euler_061()))
assert(euler_061() == 28684)