euler/python/e123.py

41 lines
879 B
Python
Raw Normal View History

2024-02-18 14:04:04 +01:00
from lib_prime import prime_nth
def varray(i):
return i * 2 + 1
def rem(i):
n = varray(i)
p = prime_nth(n)
return (pow(p - 1, n) + pow(p + 1, n)) % (p * p)
def bin_search(lo, hi, target):
if hi - lo == 1:
return varray(hi)
i = lo + ((hi - lo) // 2)
r = rem(i)
# print(f"{i=:<6} {r=}")
if r < target:
return bin_search(i, hi, target)
elif r > target:
return bin_search(lo, i, target)
assert False
def euler_123():
"""
I found out that when n is even, the remainder is always 2. When the
remainder is odd, the series grows monotonically. That means we can use a
binary search on odd values to find the solution.
"""
return bin_search(1000, 30000, 10**10)
if __name__ == "__main__":
solution = euler_123()
print("e123.py: " + str(solution))
assert(solution == 21035)