127 lines
3.4 KiB
Plaintext
127 lines
3.4 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Euler Problem 26\n",
|
||
|
"\n",
|
||
|
"A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:\n",
|
||
|
"\n",
|
||
|
"~~~\n",
|
||
|
"1/2\t = \t0.5\n",
|
||
|
"1/3\t = \t0.(3)\n",
|
||
|
"1/4\t = \t0.25\n",
|
||
|
"1/5\t = \t0.2\n",
|
||
|
"1/6\t = \t0.1(6)\n",
|
||
|
"1/7\t = \t0.(142857)\n",
|
||
|
"1/8\t = \t0.125\n",
|
||
|
"1/9\t = \t0.(1)\n",
|
||
|
"1/10 = \t0.1\n",
|
||
|
"~~~\n",
|
||
|
"\n",
|
||
|
"Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle.\n",
|
||
|
"\n",
|
||
|
"Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"The trick here is to identify a cycle. The easiest way I see to do this is to memorize the remainders. If we have a remainder that we occurred previously there is a cycle.\n",
|
||
|
"\n",
|
||
|
"Let's consider 1/3. The initial remainder is 10. For ten divided by three the new remainder is again ten (or one times ten). So we have a one-cycle of 3."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def get_cycle_count(nominator, denominator):\n",
|
||
|
" from itertools import count\n",
|
||
|
" assert(nominator == 1)\n",
|
||
|
" remainders = {}\n",
|
||
|
" remainder = nominator\n",
|
||
|
" results = []\n",
|
||
|
" for i in count():\n",
|
||
|
" result = remainder // denominator\n",
|
||
|
" remainder = remainder % denominator\n",
|
||
|
" results.append(result)\n",
|
||
|
" if remainder in remainders:\n",
|
||
|
" return i - remainders[remainder]\n",
|
||
|
" else:\n",
|
||
|
" remainders[remainder] = i\n",
|
||
|
" if remainder == 0:\n",
|
||
|
" return 0\n",
|
||
|
" remainder *= 10\n",
|
||
|
"\n",
|
||
|
"assert(get_cycle_count(1, 7) == 6)\n",
|
||
|
"assert(get_cycle_count(1, 10) == 0)\n",
|
||
|
"assert(get_cycle_count(1, 6) == 1)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"This is a simple divison algorithm. The only special thing is the remainder and that we remember when it occurs the first time. If a remainder occurrs for the second time we substract the position and thus have the lenght of the cycle. With this solution we should be efficient enough to brute force."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"983\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"s = max([(get_cycle_count(1, i), i)for i in range(1, 1000)])\n",
|
||
|
"s = s[1]\n",
|
||
|
"assert(s == 983)\n",
|
||
|
"print(s)"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"completion_date": "Mon, 9 Nov 2015, 22:11",
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.5.4"
|
||
|
},
|
||
|
"tags": [
|
||
|
"reciprocal",
|
||
|
"division",
|
||
|
"nominator",
|
||
|
"denominator"
|
||
|
]
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 0
|
||
|
}
|