euler/python/e025.py

110 lines
2.9 KiB
Python
Raw Normal View History

2015-11-16 20:56:24 +01:00
from copy import deepcopy
from itertools import islice
def primes(n):
""" Nice way to calculate primes. Should be fast. """
l = range(2, n + 1)
_l = []
while True:
p = l[0]
if p * p > n:
return _l + l
l = [i for i in l if i % p != 0]
_l.append(p)
def calculate_decimal_places(numerator, denominator):
numerator = (numerator - (numerator / denominator) * denominator) * 10
digits = []
while True:
digit = numerator / denominator
numerator = (numerator - digit * denominator) * 10
digits.append(digit)
if digits[-3:] == [0, 0, 0]:
raise StopIteration
yield digit
def has_cycle(decimal_places, n):
d = decimal_places
return list(islice(d, 0, n)) == list(islice(d, 0, n)) and \
list(islice(d, 0, n)) == list(islice(d, 0, n))
def f_025_1():
""" Second try. I realized that only primes must be
checked. Therefore, my brute force approach worked. """
l = []
for d in primes(1000):
for i in range(5, 10000):
decimal_places = calculate_decimal_places(1, d)
if has_cycle(decimal_places, i):
l.append((i, d))
break
print(max(l))
def calculate_cycle(numerator, denominator):
numerator = (numerator - (numerator / denominator) * denominator) * 10
remainders = set([])
while True:
digit = numerator / denominator
remainder = (numerator - digit * denominator)
if remainder in remainders:
raise StopIteration
remainders.add(remainder)
numerator = remainder * 10
yield digit
def f_025_2():
""" Understood trick with remembering remainder... """
s = [(len(list(calculate_cycle(1, d))), d)
for d in range(1, 1001)]
print(max(s))
def f_025_3():
""" Only testing primes... """
s = [(len(list(calculate_cycle(1, d))), d)
for d in primes(10000)]
print(max(s))
f_025_3()
#print([(find_cycle_count(calculate_decimal_places(1, d)), d)
# for d in range(1, 100)])
#print(find_cycle_count(calculate_decimal_places(22, 7)))
#l = []
#for d in range(1, 1000):
# for i in range(5, 1000):
# decimal_places = calculate_decimal_places(1, d)
# if has_cycle_one_off(decimal_places, i):
# l.append((i, d))
# break
# decimal_places = calculate_decimal_places(1, d)
# if has_cycle(decimal_places, i):
# l.append((i, d))
# break
#def find_cycle_count(decimal_places):
# cycles = []
# for digit in decimal_places:
# new_cycles = []
# for cycle in cycles:
# digits, length = cycle
# if digits[0] == digit:
# if len(digits[1:]) == 0:
# return length
# new_cycles.append((digits[1:], length))
# new_cycles.append((digits + [digit], length + 1))
# new_cycles.append(([digit], 1))
# cycles = new_cycles