euler/python/e064.py

70 lines
1.9 KiB
Python
Raw Normal View History

import math
def get_floor_sqrt(n):
return math.floor(math.sqrt(n))
def next_expansion(current_a, current_nominator,
current_denominator, original_number):
# Less typing
cn = current_nominator
cd = current_denominator
# Step 1: Multiply the fraction so that we can use the third binomial
# formula. Make sure we can reduce the nominator.
assert((original_number - cd * cd) % cn == 0)
# The new nominator is the denominator since we multiply with (x + cd) and
# then reduce the previous nominator. The new denominator is calculated by
# applying the third binomial formula and then by divided by the previous
# nominator.
cn, cd = cd, (original_number - cd * cd) // cn
# Step 2: Calculate the next a by finding the next floor square root.
next_a = math.floor((math.sqrt(original_number) + cn) // cd)
# Step 3: Remove next a from the fraction by substracting it.
cn = cn - next_a * cd
cn *= -1
return next_a, cn, cd
def get_continued_fraction_sequence(n):
# If number is a square number we return it.
floor_sqrt = get_floor_sqrt(n)
if n == floor_sqrt * floor_sqrt:
return ((floor_sqrt), [])
# Otherwise, we calculate the next expansion till we
# encounter a step a second time.
a = floor_sqrt
cn = a
cd = 1
sequence = []
previous_steps = []
while not (a, cn, cd) in previous_steps:
# print("a: {} cn: {} cd: {}".format(a, cn, cd))
previous_steps.append((a, cn, cd))
a, cn, cd = next_expansion(a, cd, cn, n)
sequence.append(a)
sequence.pop()
return ((floor_sqrt), sequence)
def get_period(n):
_, sequence = get_continued_fraction_sequence(n)
return len(sequence)
2019-07-18 03:29:59 +02:00
def euler_064():
s = len([n for n in range(1, 10001) if get_period(n) % 2 != 0])
return s
2019-07-18 03:29:59 +02:00
if __name__ == "__main__":
print("e064.py: " + str(euler_064()))
assert(euler_064() == 1322)