euler/python/e091.py

56 lines
1.1 KiB
Python
Raw Normal View History

2021-04-21 21:12:05 +02:00
from collections import namedtuple
2021-04-19 17:55:37 +02:00
2021-04-21 21:12:05 +02:00
Point = namedtuple("P", ["x", "y"])
Vector = namedtuple("V", ["x", "y"])
2021-04-19 17:55:37 +02:00
2021-04-21 21:12:05 +02:00
def generate_triangles(n):
all_points = [Point(x, y)
for x in range(0, n + 1)
for y in range(0, n + 1)
]
all_points = all_points[1:] # remove (0, 0)
all_pairs = []
for i in range(len(all_points)):
for j in range(i + 1, len(all_points)):
p = (all_points[i], all_points[j])
yield p
2021-04-19 17:55:37 +02:00
2021-04-21 21:12:05 +02:00
def vector(p1, p2):
return Vector(p2.x - p1.x, p2.y - p1.y)
2021-04-19 17:55:37 +02:00
2021-04-21 21:12:05 +02:00
def dot_product(v1, v2):
return v1.x * v2.x + v1.y * v2.y
2021-04-19 17:55:37 +02:00
2021-04-21 21:12:05 +02:00
def has_right_angle(p, q):
o = Point(0, 0)
oq = vector(o, q)
op = vector(o, p)
qp = vector(q, p)
if dot_product(oq, op) == 0:
return True
elif dot_product(oq, qp) == 0:
return True
elif dot_product(op, qp) == 0:
return True
return False
def euler_091():
count = 0
ts = generate_triangles(50)
for t in ts:
if has_right_angle(*t):
count += 1
return count
2021-04-19 17:55:37 +02:00
if __name__ == "__main__":
solution = euler_091()
print("e091.py: " + str(solution))
2021-04-21 21:12:05 +02:00
assert(solution == 14234)