Implement dynamic programming solution for Knapsack.
This commit is contained in:
parent
e3a7b12a79
commit
fd8ce084e6
89
knapsack/knapsack.py
Normal file
89
knapsack/knapsack.py
Normal file
@ -0,0 +1,89 @@
|
|||||||
|
from collections import namedtuple
|
||||||
|
|
||||||
|
Result = namedtuple("Result", ['objective', 'is_optimal', 'xs'])
|
||||||
|
Item = namedtuple("Item", ['index', 'value', 'weight'])
|
||||||
|
Knapsack = namedtuple("Knapsack", ['count', 'capacity', 'items'])
|
||||||
|
|
||||||
|
|
||||||
|
def solve_knapsack_greedy(knapsack):
|
||||||
|
remaining_capacity = knapsack.capacity
|
||||||
|
current_value = 0
|
||||||
|
xs = [0] * knapsack.count
|
||||||
|
|
||||||
|
for item in knapsack.items:
|
||||||
|
if remaining_capacity >= item.weight:
|
||||||
|
remaining_capacity -= item.weight
|
||||||
|
current_value += item.value
|
||||||
|
xs[item.index] = 1
|
||||||
|
|
||||||
|
return Result(current_value, 0, xs)
|
||||||
|
|
||||||
|
|
||||||
|
def solve_knapsack_dynamic(knapsack):
|
||||||
|
value_column = [0 for _ in range(knapsack.capacity + 1)]
|
||||||
|
# Keep track for each item for what capacities we take
|
||||||
|
# the respective item. This allows us to backtrack the items
|
||||||
|
# for the optimal solution later.
|
||||||
|
item_taken = {i: set() for i in range(len(knapsack.items))}
|
||||||
|
|
||||||
|
for item in knapsack.items:
|
||||||
|
new_column = list(value_column)
|
||||||
|
for capacity in range(knapsack.capacity + 1):
|
||||||
|
if item.weight <= capacity:
|
||||||
|
# Calculate the new value for the capacity if we take the item.
|
||||||
|
new_value = item.value + value_column[capacity - item.weight]
|
||||||
|
if new_value > value_column[capacity]:
|
||||||
|
new_column[capacity] = new_value
|
||||||
|
item_taken[item.index].add(capacity)
|
||||||
|
|
||||||
|
# There is no else case because new_colum contains the right values
|
||||||
|
# from the previous item so we only have to update when the new
|
||||||
|
# value is better.
|
||||||
|
value_column = new_column
|
||||||
|
|
||||||
|
objective = value_column[-1]
|
||||||
|
# Dynamic programing computes the best posible solution.
|
||||||
|
is_optimal = 1
|
||||||
|
|
||||||
|
# Reconstruct which items are used for the optimal solution.
|
||||||
|
xs = []
|
||||||
|
current_index = knapsack.items[-1].index
|
||||||
|
current_capacity = knapsack.capacity
|
||||||
|
while current_index >= 0:
|
||||||
|
if current_capacity in item_taken[current_index]:
|
||||||
|
current_capacity -= knapsack.items[current_index].weight
|
||||||
|
xs.append(1)
|
||||||
|
else:
|
||||||
|
xs.append(0)
|
||||||
|
current_index -= 1
|
||||||
|
xs.reverse()
|
||||||
|
|
||||||
|
return Result(objective, is_optimal, xs)
|
||||||
|
|
||||||
|
|
||||||
|
def solve_knapsack_depth_first_search(knapsack):
|
||||||
|
objective = 0
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def input_data_to_knapsack(input_data):
|
||||||
|
lines = input_data.split('\n')
|
||||||
|
item_count, capacity = map(int, lines[0].split())
|
||||||
|
|
||||||
|
items = []
|
||||||
|
for i in range(1, item_count + 1):
|
||||||
|
line = lines[i]
|
||||||
|
value, weight = map(int, line.split())
|
||||||
|
items.append(Item(i-1, value, weight))
|
||||||
|
|
||||||
|
k = Knapsack(item_count, capacity, items)
|
||||||
|
return k
|
||||||
|
|
||||||
|
|
||||||
|
def result_to_output_data(result):
|
||||||
|
# prepare the solution in the specified output format
|
||||||
|
output_data = str(result.objective) + ' ' + str(result.is_optimal) + '\n'
|
||||||
|
output_data += ' '.join(map(str, result.xs))
|
||||||
|
return output_data
|
||||||
|
|
||||||
|
|
@ -1,42 +1,17 @@
|
|||||||
#!/usr/bin/python
|
#!/usr/bin/python
|
||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
from collections import namedtuple
|
import knapsack
|
||||||
Item = namedtuple("Item", ['index', 'value', 'weight'])
|
|
||||||
|
|
||||||
def solve_it(input_data):
|
def solve_it(input_data):
|
||||||
# Modify this code to run your optimization algorithm
|
# Modify this code to run your optimization algorithm
|
||||||
|
k = knapsack.input_data_to_knapsack(input_data)
|
||||||
# parse the input
|
if k.count * k.capacity < 50000000:
|
||||||
lines = input_data.split('\n')
|
r = knapsack.solve_knapsack_dynamic(k)
|
||||||
|
else:
|
||||||
firstLine = lines[0].split()
|
r = knapsack.solve_knapsack_greedy(k)
|
||||||
item_count = int(firstLine[0])
|
return knapsack.result_to_output_data(r)
|
||||||
capacity = int(firstLine[1])
|
|
||||||
|
|
||||||
items = []
|
|
||||||
|
|
||||||
for i in range(1, item_count+1):
|
|
||||||
line = lines[i]
|
|
||||||
parts = line.split()
|
|
||||||
items.append(Item(i-1, int(parts[0]), int(parts[1])))
|
|
||||||
|
|
||||||
# a trivial greedy algorithm for filling the knapsack
|
|
||||||
# it takes items in-order until the knapsack is full
|
|
||||||
value = 0
|
|
||||||
weight = 0
|
|
||||||
taken = [0]*len(items)
|
|
||||||
|
|
||||||
for item in items:
|
|
||||||
if weight + item.weight <= capacity:
|
|
||||||
taken[item.index] = 1
|
|
||||||
value += item.value
|
|
||||||
weight += item.weight
|
|
||||||
|
|
||||||
# prepare the solution in the specified output format
|
|
||||||
output_data = str(value) + ' ' + str(0) + '\n'
|
|
||||||
output_data += ' '.join(map(str, taken))
|
|
||||||
return output_data
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
@ -47,5 +22,7 @@ if __name__ == '__main__':
|
|||||||
input_data = input_data_file.read()
|
input_data = input_data_file.read()
|
||||||
print(solve_it(input_data))
|
print(solve_it(input_data))
|
||||||
else:
|
else:
|
||||||
print('This test requires an input file. Please select one from the data directory. (i.e. python solver.py ./data/ks_4_0)')
|
print("This test requires an input file. "
|
||||||
|
"Please select one from the data directory. "
|
||||||
|
"(i.e. python solver.py ./data/ks_4_0)")
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user