Eod. Add clustering, but did not make anything better besides that.
This commit is contained in:
parent
a2f9761517
commit
65fc139e65
336
tsp/tsp.py
336
tsp/tsp.py
@ -1,10 +1,33 @@
|
||||
import math
|
||||
from functools import lru_cache
|
||||
from collections import namedtuple
|
||||
from geometry import intersect
|
||||
from random import shuffle
|
||||
import time
|
||||
|
||||
Point = namedtuple("P", ['name', 'x', 'y'])
|
||||
|
||||
class Point(object):
|
||||
def __init__(self, index, x, y):
|
||||
self.index = index
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.cluster_x = None
|
||||
self.cluster_y = None
|
||||
# A list tuples. The first field is the distance
|
||||
# and the second is another point (i.e. a neighbor).
|
||||
self.neighbors = []
|
||||
|
||||
def add_neighbors(self, neighbors):
|
||||
neighbors = [(n, distance(self, n)) for n in neighbors]
|
||||
self.neighbors = sorted(neighbors, key=lambda t: t[1])
|
||||
|
||||
def __str__(self):
|
||||
# m = "P_{}({}, {})".format(self.index, self.x, self.y)
|
||||
# m = "P_{}({}, {})".format(self.index, self.cluster_x, self.cluster_y)
|
||||
m = "P({})".format(self.index)
|
||||
return m
|
||||
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
||||
|
||||
|
||||
def parse_input_data(input_data):
|
||||
@ -20,44 +43,13 @@ def float_is_equal(a, b):
|
||||
return False
|
||||
|
||||
|
||||
def plot_graph(points):
|
||||
try:
|
||||
import matplotlib.pyplot as plt
|
||||
except ModuleNotFoundError:
|
||||
return
|
||||
|
||||
def plot_arrows():
|
||||
for i in range(len(points)):
|
||||
p1 = points[i - 1]
|
||||
p2 = points[i]
|
||||
plot_arrow(p1, p2)
|
||||
|
||||
def plot_arrow(p1, p2):
|
||||
x = p1.x
|
||||
y = p1.y
|
||||
dx = p2.x - x
|
||||
dy = p2.y - y
|
||||
opt = {'head_width': 0.4, 'head_length': 0.4, 'width': 0.05,
|
||||
'length_includes_head': True}
|
||||
plt.arrow(x, y, dx, dy, **opt)
|
||||
|
||||
def plot_points():
|
||||
for p in points:
|
||||
plt.plot(p.x, p.y, '')
|
||||
plt.text(p.x, p.y, ' ' + p.name)
|
||||
|
||||
plot_points()
|
||||
plot_arrows()
|
||||
plt.show()
|
||||
|
||||
|
||||
def prepare_output_data(points):
|
||||
# Basic plausibility checks
|
||||
assert(len(set(points)) == len(points))
|
||||
assert(len(points) > 4)
|
||||
obj = total_distance(points)
|
||||
output_data = '%.2f' % obj + ' ' + str(0) + '\n'
|
||||
output_data += ' '.join(map(lambda p: p.name, points))
|
||||
output_data += ' '.join(map(lambda p: str(p.index), points))
|
||||
return output_data
|
||||
|
||||
|
||||
@ -125,63 +117,38 @@ def swap_edges(i, j, points, current_distance=0):
|
||||
return current_distance
|
||||
|
||||
|
||||
def local_search_2_opt(points):
|
||||
current_total = total_distance(points)
|
||||
ignore_set = set()
|
||||
while True:
|
||||
pi, i = longest_distance(points, ignore_set)
|
||||
ignore_set.add(pi)
|
||||
if not pi:
|
||||
break
|
||||
|
||||
best_new_total = current_total
|
||||
best_points = None
|
||||
swap = None
|
||||
for j in range(len(points)):
|
||||
if j in [i, i + 1, i + 2]:
|
||||
continue
|
||||
new_points = list(points)
|
||||
swap_edges(i, j - 1, new_points)
|
||||
new_total = total_distance(new_points)
|
||||
if new_total < best_new_total:
|
||||
swap = (points[i], points[j - 1])
|
||||
best_new_total = new_total
|
||||
best_points = new_points
|
||||
|
||||
if best_new_total < current_total:
|
||||
current_total = best_new_total
|
||||
points = best_points
|
||||
ignore_set = set()
|
||||
return points
|
||||
|
||||
|
||||
def reorder_points_greedy(points):
|
||||
current_point = points[0]
|
||||
solution = [current_point]
|
||||
points = points[1:]
|
||||
best_length = float("inf")
|
||||
best_solution = None
|
||||
|
||||
while points:
|
||||
min_length = 999999
|
||||
min_point = None
|
||||
for next_point in points:
|
||||
new_length = distance(current_point, next_point)
|
||||
if new_length < min_length:
|
||||
min_length = new_length
|
||||
min_point = next_point
|
||||
current_point = min_point
|
||||
solution.append(current_point)
|
||||
points.remove(current_point)
|
||||
for i in range(1000):
|
||||
shuffle(points)
|
||||
current_point, points = points[0], points[1:]
|
||||
solution = [current_point]
|
||||
|
||||
return solution
|
||||
while points:
|
||||
next_point = None
|
||||
# Select the closest point as the following one.
|
||||
for neighbor, _ in current_point.neighbors:
|
||||
if neighbor in points:
|
||||
next_point = neighbor
|
||||
points.remove(next_point)
|
||||
break
|
||||
|
||||
# If none of the neighbors could be selected use any point.
|
||||
if next_point is None:
|
||||
next_point = points.pop()
|
||||
|
||||
def print_swap(i, j, points):
|
||||
print("Swap:", points[i].name, " <-> ", points[j].name)
|
||||
solution.append(next_point)
|
||||
current_point = next_point
|
||||
|
||||
total_length = total_distance(solution)
|
||||
points = solution
|
||||
if total_length < best_length:
|
||||
best_length = total_length
|
||||
best_solution = solution.copy()
|
||||
|
||||
def get_indices(current_index, points):
|
||||
for i in range(len(points)):
|
||||
yield i
|
||||
return best_solution
|
||||
|
||||
|
||||
def k_opt(p1_index, points, steps):
|
||||
@ -194,8 +161,8 @@ def k_opt(p1_index, points, steps):
|
||||
ignore_set.add(p2)
|
||||
|
||||
p4_index = None
|
||||
#for p3_index in range(len(points)):
|
||||
for p3_index in get_indices(p2_index, points):
|
||||
# TODO(felixm): Keep track of current indices and then make this more efficient.
|
||||
for p3_index in range(len(points)):
|
||||
p3 = points[p3_index]
|
||||
p4 = points[p3_index - 1]
|
||||
if p4 in ignore_set or p4 is p1:
|
||||
@ -246,36 +213,154 @@ def local_search_k_opt(points):
|
||||
return points
|
||||
|
||||
|
||||
def split_into_sections(points):
|
||||
x_min, x_max, y_min, y_max = float("inf"), 0, float("inf"), 0
|
||||
for p in points:
|
||||
if p.x < x_min: x_min = p.x
|
||||
if p.x > x_max: x_max = p.x
|
||||
if p.y < y_min: y_min = p.y
|
||||
if p.y > y_max: y_max = p.y
|
||||
return
|
||||
|
||||
class Map(object):
|
||||
# Create Map. Cluster points into regions. Calculate distances only to own
|
||||
# and neighbor regions. We can actually cluster in O(n) when we know how
|
||||
# high and wide the clusters are. Once we have that working we go from
|
||||
# there
|
||||
CLUSTER_SIZE = 3 # How many points we want per cluster.
|
||||
|
||||
def __init__(self, points):
|
||||
self.points = points
|
||||
self.num_points = len(points)
|
||||
|
||||
self.calc_corners()
|
||||
self.calc_cluster_dim()
|
||||
self.sort_points_into_clusters()
|
||||
self.add_neighbors_to_points()
|
||||
|
||||
def calc_cluster_dim(self):
|
||||
clusters = self.num_points // self.CLUSTER_SIZE
|
||||
# Calculate number of clusters to have a square
|
||||
self.clusters_x = math.ceil(math.sqrt(clusters))
|
||||
self.clusters_y = self.clusters_x
|
||||
self.clusters_total = self.clusters_x ** 2
|
||||
self.cluster_x_dim = (self.x_max - self.x_min) / self.clusters_x
|
||||
self.cluster_y_dim = (self.y_max - self.y_min) / self.clusters_y
|
||||
|
||||
def add_neighbors_to_points(self):
|
||||
""" Add all points from the surrounding clusters to each point. """
|
||||
for p in self.points:
|
||||
clusters_x = [p.cluster_x]
|
||||
clusters_y = [p.cluster_y]
|
||||
|
||||
if p.cluster_x - 1 >= 0:
|
||||
clusters_x.append(p.cluster_x - 1)
|
||||
if p.cluster_x + 1 < self.clusters_x:
|
||||
clusters_x.append(p.cluster_x + 1)
|
||||
if p.cluster_y - 1 >= 0:
|
||||
clusters_y.append(p.cluster_y - 1)
|
||||
if p.cluster_y + 1 < self.clusters_y:
|
||||
clusters_y.append(p.cluster_y + 1)
|
||||
|
||||
clusters = [(x, y)
|
||||
for x in clusters_x
|
||||
for y in clusters_y]
|
||||
neighbors = []
|
||||
for x, y in clusters:
|
||||
for p2 in self.clusters[x][y]:
|
||||
if p is not p2:
|
||||
neighbors.append(p2)
|
||||
p.add_neighbors(neighbors)
|
||||
|
||||
def sort_points_into_clusters(self):
|
||||
self.clusters = [[[]
|
||||
for x in range(self.clusters_y)]
|
||||
for y in range(self.clusters_y)]
|
||||
for p in self.points:
|
||||
cluster_x = int((p.x - self.x_min) // self.cluster_x_dim)
|
||||
cluster_y = int((p.y - self.y_min) // self.cluster_y_dim)
|
||||
|
||||
# If the point is on the outer edge of the highest cluster
|
||||
# the index will be outside the correct range. We put it
|
||||
# into the closes cluster.
|
||||
if cluster_x == self.clusters_x:
|
||||
cluster_x -= 1
|
||||
if cluster_y == self.clusters_y:
|
||||
cluster_y -= 1
|
||||
|
||||
self.clusters[cluster_x][cluster_y].append(p)
|
||||
p.cluster_x = cluster_x
|
||||
p.cluster_y = cluster_y
|
||||
|
||||
def calc_corners(self):
|
||||
x_min, x_max = float("inf"), float("-inf")
|
||||
y_min, y_max = float("inf"), float("-inf")
|
||||
for p in self.points:
|
||||
if p.x < x_min:
|
||||
x_min = p.x
|
||||
if p.x > x_max:
|
||||
x_max = p.x
|
||||
if p.y < y_min:
|
||||
y_min = p.y
|
||||
if p.y > y_max:
|
||||
y_max = p.y
|
||||
self.x_min = x_min
|
||||
self.x_max = x_max
|
||||
self.y_min = y_min
|
||||
self.y_max = y_max
|
||||
|
||||
def plot(self):
|
||||
try:
|
||||
import matplotlib.pyplot as plt
|
||||
except ModuleNotFoundError:
|
||||
return
|
||||
|
||||
def plot_grid():
|
||||
for x_i in range(self.clusters_x + 1):
|
||||
x_1 = self.x_min + x_i * self.cluster_x_dim
|
||||
x_2 = x_1
|
||||
y_1 = self.y_min
|
||||
y_2 = self.y_max
|
||||
plt.plot([x_1, x_2], [y_1, y_2], 'b:')
|
||||
for y_i in range(self.clusters_y + 1):
|
||||
x_1 = self.x_min
|
||||
x_2 = self.x_max
|
||||
y_1 = self.y_min + y_i * self.cluster_y_dim
|
||||
y_2 = y_1
|
||||
plt.plot([x_1, x_2], [y_1, y_2], 'b:')
|
||||
|
||||
def plot_arrows():
|
||||
for i in range(self.num_points):
|
||||
p1 = self.points[i - 1]
|
||||
p2 = self.points[i]
|
||||
plot_arrow(p1, p2)
|
||||
|
||||
def plot_arrow(p1, p2):
|
||||
x = p1.x
|
||||
y = p1.y
|
||||
dx = p2.x - x
|
||||
dy = p2.y - y
|
||||
opt = {'head_width': 0.4, 'head_length': 0.4, 'width': 0.05,
|
||||
'length_includes_head': True}
|
||||
plt.arrow(x, y, dx, dy, **opt)
|
||||
|
||||
def plot_points():
|
||||
for i, p in enumerate(self.points):
|
||||
plt.plot(p.x, p.y, '')
|
||||
plt.text(p.x, p.y, ' ' + str(p))
|
||||
for nb, _ in p.neighbors:
|
||||
# plt.plot([p.x, nb.x], [p.y, nb.y], 'r--')
|
||||
pass
|
||||
|
||||
plot_points()
|
||||
plot_grid()
|
||||
plot_arrows()
|
||||
plt.show()
|
||||
|
||||
|
||||
def solve_it(input_data):
|
||||
points = parse_input_data(input_data)
|
||||
num_points = len(points)
|
||||
# Initialiaze map before algorithm because it clusters the points
|
||||
# and adds the neighbors to each point.
|
||||
m = Map(points)
|
||||
m.points = reorder_points_greedy(points)
|
||||
# FIXME(felixm): Don't do this here.
|
||||
m.points = local_search_k_opt(m.points)
|
||||
m.plot()
|
||||
|
||||
if num_points == 51:
|
||||
return """428.98 0
|
||||
47 26 6 36 12 30 23 35 13 7 19 40 11 42 18 16 44 14 15 38 50 39 43 29 21 37 20 25 1 31 22 48 49 17 32 0 33 5 2 28 10 9 45 3 46 8 4 34 24 41 27"""
|
||||
elif num_points == 100:
|
||||
return """21930.64 0
|
||||
5 21 99 11 32 20 87 88 77 37 47 7 83 39 74 66 57 71 24 3 55 96 80 14 16 4 91 13 69 28 62 64 76 34 2 50 89 61 95 73 81 56 31 58 27 75 10 86 78 67 98 65 0 12 93 15 97 33 60 1 45 36 46 30 94 82 49 23 6 85 63 48 68 41 59 42 53 9 18 52 22 8 90 38 70 17 79 26 29 51 84 72 19 25 40 43 44 35 54 92
|
||||
"""
|
||||
elif num_points < 2000:
|
||||
points = reorder_points_greedy(points)
|
||||
points = local_search_k_opt(points)
|
||||
|
||||
#sections = split_into_sections(points)
|
||||
#points = local_search_2_opt(points)
|
||||
# plot_graph(points)
|
||||
|
||||
return prepare_output_data(points)
|
||||
return prepare_output_data(m.points)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@ -284,3 +369,32 @@ if __name__ == "__main__":
|
||||
input_data = input_data_file.read()
|
||||
print(solve_it(input_data))
|
||||
|
||||
|
||||
def local_search_2_opt(points):
|
||||
current_total = total_distance(points)
|
||||
ignore_set = set()
|
||||
while True:
|
||||
pi, i = longest_distance(points, ignore_set)
|
||||
ignore_set.add(pi)
|
||||
if not pi:
|
||||
break
|
||||
|
||||
best_new_total = current_total
|
||||
best_points = None
|
||||
swap = None
|
||||
for j in range(len(points)):
|
||||
if j in [i, i + 1, i + 2]:
|
||||
continue
|
||||
new_points = list(points)
|
||||
swap_edges(i, j - 1, new_points)
|
||||
new_total = total_distance(new_points)
|
||||
if new_total < best_new_total:
|
||||
swap = (points[i], points[j - 1])
|
||||
best_new_total = new_total
|
||||
best_points = new_points
|
||||
|
||||
if best_new_total < current_total:
|
||||
current_total = best_new_total
|
||||
points = best_points
|
||||
ignore_set = set()
|
||||
return points
|
||||
|
Loading…
Reference in New Issue
Block a user