Implement k-opt.

This commit is contained in:
Felix Martin 2019-12-24 14:37:50 -05:00
parent 19c1515c0e
commit 26d346e60c
2 changed files with 217 additions and 117 deletions

13
tsp/data/tsp_lec Normal file
View File

@ -0,0 +1,13 @@
12
0.0 0.0
0.6 4.2
2.7 3.7
2.1 4.3
7.2 4.6
8.3 3.2
7.0 0.5
4.7 2.8
5.2 3.6
3.7 3.7
3.6 2.8
2.1 0.0

View File

@ -3,18 +3,21 @@ from functools import lru_cache
from collections import namedtuple
from geometry import intersect
Point = namedtuple("Point", ['index', 'x', 'y'])
Point = namedtuple("P", ['name', 'x', 'y'])
DEBUG = False
def parse_input_data(input_data):
lines = input_data.split('\n')
node_count = int(lines[0])
return [Point(i, *map(float, lines[i + 1].split()))
return [Point(str(i), *map(float, lines[i + 1].split()))
for i in range(0, node_count)]
def plot_graph(points):
import matplotlib.pyplot as plt
if not DEBUG:
return
def plot_arrows():
for i in range(len(points)):
@ -34,144 +37,228 @@ def plot_graph(points):
def plot_points():
for p in points:
plt.plot(p.x, p.y, '')
plt.text(p.x, p.y, ' ' + str(p.index))
plt.text(p.x, p.y, ' ' + p.name)
plot_points()
plot_arrows()
plt.show()
def solve_it(input_data):
def prepare_output_data(points):
# Basic plausibility checks
assert(len(set(points)) == len(points))
assert(len(points) > 4)
obj = total_distance(points)
output_data = '%.2f' % obj + ' ' + str(0) + '\n'
output_data += ' '.join(map(lambda p: p.name, points))
return output_data
@lru_cache(maxsize=1000000)
def length(p_1, p_2):
return math.sqrt((p_1.x - p_2.x)**2 + (p_1.y - p_2.y)**2)
def prepare_output_data(points):
obj = total_length(points)
output_data = '%.2f' % obj + ' ' + str(0) + '\n'
output_data += ' '.join(map(lambda p: str(p.index), points))
return output_data
@lru_cache(maxsize=1000000)
def distance(point_1, point_2):
""" Calculate the distance between two points. """
p1, p2 = point_1, point_2
return math.sqrt((p1.x - p2.x)**2 + (p1.y - p2.y)**2)
def is_valid(points, num_nodes):
expected_points = set(range(num_nodes))
assert(set([p.index for p in points]) == expected_points)
return True
def total_length(points):
return sum([length(points[i - 1], points[i])
for i in range(len(points))])
def total_distance(points):
""" Calculate the total distance of the point sequence. """
# Use negative indexing to get the distance from last to first point
return sum([distance(points[i - 1], points[i])
for i in range(len(points))])
def initial_solution_naiv():
def longest_distance(points, ignore_list):
""" Returns the point and index of the
point with the longest distance to the next point. """
longest_distance = 0
longest_dist_point = None
longest_dist_index = None
for i in range(len(points)):
p1, p2 = points[i - 1], points[i]
if p1 in ignore_list:
continue
current_distance = distance(p1, p2)
if current_distance > longest_distance:
longest_distance = current_distance
longest_dist_point = p1
longest_dist_index = i - 1
return longest_dist_point, longest_dist_index
def swap_edges(i, j, points):
"""
Swaps edges in-place. Also returns result.
:param i: Index of first point of first edge.
:param j: Index if first point of second edge.
"""
assert(i != j)
_, p12 = points[i], points[i + 1]
p21, _ = points[j], points[j + 1]
points[i + 1] = p21
points[j] = p12
# Reverse order of points between swapped lines.
if i < j:
points[i + 2:j] = points[i + 2:j][::-1]
else:
# List goes over boundaries
len_points = len(points)
segment = points[i + 2:] + points[:j]
segment.reverse()
points[i + 2:] = segment[:len_points - i - 2]
points[:j] = segment[len_points - i - 2:]
return points
def local_search(points, ignore_list):
#print("-" * 80)
#print("Local search")
#print("ignore_list", ignore_list)
max_len = 0
max_index = None
for i in range(len(points)):
if points[i - 1] in ignore_list:
continue
new_len = length(points[i - 1], points[i])
if new_len > max_len:
max_len = new_len
p_i = i - 1
p1 = points[p_i]
p2 = points[p_i + 1]
#print("Found max_len for ", edge(p1, p2))
current_length = total_distance(points)
for p_j in range(len(points)):
if p_j in [p_i, p_i + 1, p_i + 2]:
continue
q1 = points[p_j - 1]
q2 = points[p_j]
new_points = list(points)
swap_edges(p_i, p_j - 1, new_points)
new_length = total_distance(new_points)
if new_length < current_length:
#print("Swaping", edge(points[p_i], points[p_i + 1]), "and", edge(points[p_j - 1], points[p_j]))
#print("Better new_points", new_length, "smaller", current_length)
ignore_list.clear()
return new_points
#print("Did not find an intersection that provides better results.")
ignore_list.append(p1)
return points
def reorder_points_greedy(points):
current_point = points[0]
solution = [current_point]
points = points[1:]
while points:
min_length = 999999
min_point = None
for next_point in points:
new_length = distance(current_point, next_point)
if new_length < min_length:
min_length = new_length
min_point = next_point
current_point = min_point
solution.append(current_point)
points.remove(current_point)
return solution
def print_swap(i, j, points):
if not DEBUG:
return
print("Swap:", points[i].name, " <-> ", points[j].name)
def k_opt(p1_index, points, ignore_list, swaps):
print("k_opt ignore_list len", len(ignore_list))
i = p1_index
p1, p2 = points[i], points[i + 1]
dist_p1p2 = distance(p1, p2)
ignore_list.append(p2)
p4_index = None
for p3_index in range(len(points)):
p3 = points[p3_index]
p4 = points[p3_index - 1]
if p4 in ignore_list or p4 is p1:
continue
dist_p2p3 = distance(p2, p3)
if dist_p2p3 < dist_p1p2:
p4_index = p3_index - 1
dist_p1p2 = dist_p2p3
if not p4_index:
return []
def reorder_points_greedy(points):
current_point = points[0]
solution = [current_point]
points = set(points[1:])
while points:
min_length = 999999
min_point = None
for next_point in points:
new_length = length(current_point, next_point)
if new_length < min_length:
min_length = new_length
min_point = next_point
current_point = min_point
solution.append(current_point)
points.remove(current_point)
return solution
def swap_edges(i, j, points):
_, p12 = points[i], points[i + 1]
p21, _ = points[j], points[j + 1]
points[i + 1] = p21
points[j] = p12
points[i + 2:j] = points[i + 2:j][::-1]
return points
def edge(p1, p2):
return "{} -> {}".format(p1.index, p2.index)
def local_search(points, ignore_list):
# Find longest edges to swap
#print("-" * 80)
#print("Local search")
#print("ignore_list", ignore_list)
max_len = 0
max_index = None
for i in range(len(points)):
if points[i - 1] in ignore_list:
continue
new_len = length(points[i - 1], points[i])
if new_len > max_len:
max_len = new_len
p_i = i - 1
p1 = points[p_i]
p2 = points[p_i + 1]
#print("Found max_len for ", edge(p1, p2))
current_length = total_length(points)
for p_j in range(len(points)):
if p_j in [p_i, p_i + 1, p_i + 2]:
continue
q1 = points[p_j - 1]
q2 = points[p_j]
new_points = list(points)
swap_edges(p_i, p_j - 1, new_points)
new_length = total_length(new_points)
if new_length < current_length:
#print("Swaping", edge(points[p_i], points[p_i + 1]),
# "and", edge(points[p_j - 1], points[p_j]))
#print("Test new_points", new_length, "smaller", current_length)
#print("Better, return new_points.")
ignore_list.clear()
return new_points
#if intersect(p1, p2, q1, q2):
# print(edge(p1, p2), "intersects", edge(q1, q2))
# new_points = list(points)
# swap_edges(p_i, p_j - 1, new_points)
# new_length = total_length(new_points)
# print("Test new_points", new_length, "smaller", current_length)
# if new_length < current_length:
# print("Better, return new_points.")
# ignore_list.append(p1)
# return new_points
# else:
# print("Worse, find better intersection.")
#print("Did not find an intersection that provides better results.")
ignore_list.append(p1)
return points
points = parse_input_data(input_data)
points = reorder_points_greedy(points)
num_nodes = len(points)
print_swap(p1_index, p4_index, points)
plot_graph(points)
swap_edges(p1_index, p4_index, points)
swaps.append([p1_index, p4_index])
new_total = total_distance(points)
print("Current distance", new_total)
r = k_opt(p1_index, points, ignore_list, list(swaps))
r.append((new_total, swaps))
return r
def local_search_k_opt(points):
current_total = total_distance(points)
ignore_list = []
while True:
points_before_change = list(points)
try:
points = local_search(points, ignore_list)
except UnboundLocalError:
print()
print("--- new iteration ---")
print("Ignored points", [p.name for p in ignore_list])
point, index = longest_distance(points, ignore_list)
if not point:
print("No more points")
break
is_valid(points, num_nodes)
value = total_length(points)
# plot_graph(points_before_change)
is_valid(points, num_nodes)
ignore_list.append(point)
print("Next point (longest_distance)", point)
r = k_opt(index, list(points), [], [])
print("k-opt", len(r))
if not r:
print("Found no better solution.")
continue
new_total, steps = min(r)
print("new_total", new_total, "current_total", current_total)
if new_total < current_total:
print("Improvment. Apply steps.")
for step in steps:
swap_edges(*step, points)
assert(total_distance(points) == new_total)
current_total = new_total
ignore_list = []
else:
print("No changes.")
plot_graph(points)
return points
def solve_it(input_data):
points = parse_input_data(input_data)
num_points = len(points)
#points = reorder_points_greedy(points)
local_search_k_opt(points)
# plot_graph(points)
return prepare_output_data(points)
if __name__ == "__main__":
file_location = "data/tsp_200_2"
file_location = "data/tsp_51_1"
# DEBUG = True
with open(file_location, 'r') as input_data_file:
input_data = input_data_file.read()
print(solve_it(input_data))