Implement k-opt.
This commit is contained in:
parent
19c1515c0e
commit
26d346e60c
13
tsp/data/tsp_lec
Normal file
13
tsp/data/tsp_lec
Normal file
@ -0,0 +1,13 @@
|
||||
12
|
||||
0.0 0.0
|
||||
0.6 4.2
|
||||
2.7 3.7
|
||||
2.1 4.3
|
||||
7.2 4.6
|
||||
8.3 3.2
|
||||
7.0 0.5
|
||||
4.7 2.8
|
||||
5.2 3.6
|
||||
3.7 3.7
|
||||
3.6 2.8
|
||||
2.1 0.0
|
321
tsp/tsp.py
321
tsp/tsp.py
@ -3,18 +3,21 @@ from functools import lru_cache
|
||||
from collections import namedtuple
|
||||
from geometry import intersect
|
||||
|
||||
Point = namedtuple("Point", ['index', 'x', 'y'])
|
||||
Point = namedtuple("P", ['name', 'x', 'y'])
|
||||
DEBUG = False
|
||||
|
||||
|
||||
def parse_input_data(input_data):
|
||||
lines = input_data.split('\n')
|
||||
node_count = int(lines[0])
|
||||
return [Point(i, *map(float, lines[i + 1].split()))
|
||||
return [Point(str(i), *map(float, lines[i + 1].split()))
|
||||
for i in range(0, node_count)]
|
||||
|
||||
|
||||
def plot_graph(points):
|
||||
import matplotlib.pyplot as plt
|
||||
if not DEBUG:
|
||||
return
|
||||
|
||||
def plot_arrows():
|
||||
for i in range(len(points)):
|
||||
@ -34,144 +37,228 @@ def plot_graph(points):
|
||||
def plot_points():
|
||||
for p in points:
|
||||
plt.plot(p.x, p.y, '')
|
||||
plt.text(p.x, p.y, ' ' + str(p.index))
|
||||
plt.text(p.x, p.y, ' ' + p.name)
|
||||
|
||||
plot_points()
|
||||
plot_arrows()
|
||||
plt.show()
|
||||
|
||||
|
||||
def solve_it(input_data):
|
||||
def prepare_output_data(points):
|
||||
# Basic plausibility checks
|
||||
assert(len(set(points)) == len(points))
|
||||
assert(len(points) > 4)
|
||||
obj = total_distance(points)
|
||||
output_data = '%.2f' % obj + ' ' + str(0) + '\n'
|
||||
output_data += ' '.join(map(lambda p: p.name, points))
|
||||
return output_data
|
||||
|
||||
@lru_cache(maxsize=1000000)
|
||||
def length(p_1, p_2):
|
||||
return math.sqrt((p_1.x - p_2.x)**2 + (p_1.y - p_2.y)**2)
|
||||
|
||||
def prepare_output_data(points):
|
||||
obj = total_length(points)
|
||||
output_data = '%.2f' % obj + ' ' + str(0) + '\n'
|
||||
output_data += ' '.join(map(lambda p: str(p.index), points))
|
||||
return output_data
|
||||
@lru_cache(maxsize=1000000)
|
||||
def distance(point_1, point_2):
|
||||
""" Calculate the distance between two points. """
|
||||
p1, p2 = point_1, point_2
|
||||
return math.sqrt((p1.x - p2.x)**2 + (p1.y - p2.y)**2)
|
||||
|
||||
def is_valid(points, num_nodes):
|
||||
expected_points = set(range(num_nodes))
|
||||
assert(set([p.index for p in points]) == expected_points)
|
||||
return True
|
||||
|
||||
def total_length(points):
|
||||
return sum([length(points[i - 1], points[i])
|
||||
for i in range(len(points))])
|
||||
def total_distance(points):
|
||||
""" Calculate the total distance of the point sequence. """
|
||||
# Use negative indexing to get the distance from last to first point
|
||||
return sum([distance(points[i - 1], points[i])
|
||||
for i in range(len(points))])
|
||||
|
||||
def initial_solution_naiv():
|
||||
|
||||
def longest_distance(points, ignore_list):
|
||||
""" Returns the point and index of the
|
||||
point with the longest distance to the next point. """
|
||||
longest_distance = 0
|
||||
longest_dist_point = None
|
||||
longest_dist_index = None
|
||||
for i in range(len(points)):
|
||||
p1, p2 = points[i - 1], points[i]
|
||||
if p1 in ignore_list:
|
||||
continue
|
||||
current_distance = distance(p1, p2)
|
||||
if current_distance > longest_distance:
|
||||
longest_distance = current_distance
|
||||
longest_dist_point = p1
|
||||
longest_dist_index = i - 1
|
||||
return longest_dist_point, longest_dist_index
|
||||
|
||||
|
||||
def swap_edges(i, j, points):
|
||||
"""
|
||||
Swaps edges in-place. Also returns result.
|
||||
|
||||
:param i: Index of first point of first edge.
|
||||
:param j: Index if first point of second edge.
|
||||
"""
|
||||
assert(i != j)
|
||||
_, p12 = points[i], points[i + 1]
|
||||
p21, _ = points[j], points[j + 1]
|
||||
points[i + 1] = p21
|
||||
points[j] = p12
|
||||
|
||||
# Reverse order of points between swapped lines.
|
||||
if i < j:
|
||||
points[i + 2:j] = points[i + 2:j][::-1]
|
||||
else:
|
||||
# List goes over boundaries
|
||||
len_points = len(points)
|
||||
segment = points[i + 2:] + points[:j]
|
||||
segment.reverse()
|
||||
points[i + 2:] = segment[:len_points - i - 2]
|
||||
points[:j] = segment[len_points - i - 2:]
|
||||
return points
|
||||
|
||||
|
||||
def local_search(points, ignore_list):
|
||||
#print("-" * 80)
|
||||
#print("Local search")
|
||||
#print("ignore_list", ignore_list)
|
||||
|
||||
max_len = 0
|
||||
max_index = None
|
||||
for i in range(len(points)):
|
||||
if points[i - 1] in ignore_list:
|
||||
continue
|
||||
new_len = length(points[i - 1], points[i])
|
||||
if new_len > max_len:
|
||||
max_len = new_len
|
||||
p_i = i - 1
|
||||
p1 = points[p_i]
|
||||
p2 = points[p_i + 1]
|
||||
#print("Found max_len for ", edge(p1, p2))
|
||||
|
||||
current_length = total_distance(points)
|
||||
for p_j in range(len(points)):
|
||||
if p_j in [p_i, p_i + 1, p_i + 2]:
|
||||
continue
|
||||
q1 = points[p_j - 1]
|
||||
q2 = points[p_j]
|
||||
|
||||
new_points = list(points)
|
||||
swap_edges(p_i, p_j - 1, new_points)
|
||||
new_length = total_distance(new_points)
|
||||
if new_length < current_length:
|
||||
#print("Swaping", edge(points[p_i], points[p_i + 1]), "and", edge(points[p_j - 1], points[p_j]))
|
||||
#print("Better new_points", new_length, "smaller", current_length)
|
||||
ignore_list.clear()
|
||||
return new_points
|
||||
|
||||
#print("Did not find an intersection that provides better results.")
|
||||
ignore_list.append(p1)
|
||||
return points
|
||||
|
||||
|
||||
def reorder_points_greedy(points):
|
||||
current_point = points[0]
|
||||
solution = [current_point]
|
||||
points = points[1:]
|
||||
|
||||
while points:
|
||||
min_length = 999999
|
||||
min_point = None
|
||||
for next_point in points:
|
||||
new_length = distance(current_point, next_point)
|
||||
if new_length < min_length:
|
||||
min_length = new_length
|
||||
min_point = next_point
|
||||
current_point = min_point
|
||||
solution.append(current_point)
|
||||
points.remove(current_point)
|
||||
|
||||
return solution
|
||||
|
||||
|
||||
def print_swap(i, j, points):
|
||||
if not DEBUG:
|
||||
return
|
||||
print("Swap:", points[i].name, " <-> ", points[j].name)
|
||||
|
||||
|
||||
def k_opt(p1_index, points, ignore_list, swaps):
|
||||
print("k_opt ignore_list len", len(ignore_list))
|
||||
i = p1_index
|
||||
p1, p2 = points[i], points[i + 1]
|
||||
dist_p1p2 = distance(p1, p2)
|
||||
ignore_list.append(p2)
|
||||
|
||||
p4_index = None
|
||||
for p3_index in range(len(points)):
|
||||
p3 = points[p3_index]
|
||||
p4 = points[p3_index - 1]
|
||||
if p4 in ignore_list or p4 is p1:
|
||||
continue
|
||||
dist_p2p3 = distance(p2, p3)
|
||||
if dist_p2p3 < dist_p1p2:
|
||||
p4_index = p3_index - 1
|
||||
dist_p1p2 = dist_p2p3
|
||||
|
||||
if not p4_index:
|
||||
return []
|
||||
|
||||
def reorder_points_greedy(points):
|
||||
current_point = points[0]
|
||||
solution = [current_point]
|
||||
points = set(points[1:])
|
||||
|
||||
while points:
|
||||
min_length = 999999
|
||||
min_point = None
|
||||
for next_point in points:
|
||||
new_length = length(current_point, next_point)
|
||||
if new_length < min_length:
|
||||
min_length = new_length
|
||||
min_point = next_point
|
||||
current_point = min_point
|
||||
solution.append(current_point)
|
||||
points.remove(current_point)
|
||||
|
||||
return solution
|
||||
|
||||
def swap_edges(i, j, points):
|
||||
_, p12 = points[i], points[i + 1]
|
||||
p21, _ = points[j], points[j + 1]
|
||||
|
||||
points[i + 1] = p21
|
||||
points[j] = p12
|
||||
points[i + 2:j] = points[i + 2:j][::-1]
|
||||
return points
|
||||
|
||||
def edge(p1, p2):
|
||||
return "{} -> {}".format(p1.index, p2.index)
|
||||
|
||||
def local_search(points, ignore_list):
|
||||
# Find longest edges to swap
|
||||
#print("-" * 80)
|
||||
#print("Local search")
|
||||
#print("ignore_list", ignore_list)
|
||||
|
||||
max_len = 0
|
||||
max_index = None
|
||||
for i in range(len(points)):
|
||||
if points[i - 1] in ignore_list:
|
||||
continue
|
||||
new_len = length(points[i - 1], points[i])
|
||||
if new_len > max_len:
|
||||
max_len = new_len
|
||||
p_i = i - 1
|
||||
p1 = points[p_i]
|
||||
p2 = points[p_i + 1]
|
||||
#print("Found max_len for ", edge(p1, p2))
|
||||
|
||||
current_length = total_length(points)
|
||||
for p_j in range(len(points)):
|
||||
if p_j in [p_i, p_i + 1, p_i + 2]:
|
||||
continue
|
||||
q1 = points[p_j - 1]
|
||||
q2 = points[p_j]
|
||||
|
||||
new_points = list(points)
|
||||
swap_edges(p_i, p_j - 1, new_points)
|
||||
new_length = total_length(new_points)
|
||||
if new_length < current_length:
|
||||
#print("Swaping", edge(points[p_i], points[p_i + 1]),
|
||||
# "and", edge(points[p_j - 1], points[p_j]))
|
||||
#print("Test new_points", new_length, "smaller", current_length)
|
||||
#print("Better, return new_points.")
|
||||
ignore_list.clear()
|
||||
return new_points
|
||||
|
||||
#if intersect(p1, p2, q1, q2):
|
||||
# print(edge(p1, p2), "intersects", edge(q1, q2))
|
||||
# new_points = list(points)
|
||||
# swap_edges(p_i, p_j - 1, new_points)
|
||||
# new_length = total_length(new_points)
|
||||
# print("Test new_points", new_length, "smaller", current_length)
|
||||
# if new_length < current_length:
|
||||
# print("Better, return new_points.")
|
||||
# ignore_list.append(p1)
|
||||
# return new_points
|
||||
# else:
|
||||
# print("Worse, find better intersection.")
|
||||
|
||||
#print("Did not find an intersection that provides better results.")
|
||||
ignore_list.append(p1)
|
||||
return points
|
||||
|
||||
points = parse_input_data(input_data)
|
||||
points = reorder_points_greedy(points)
|
||||
num_nodes = len(points)
|
||||
print_swap(p1_index, p4_index, points)
|
||||
plot_graph(points)
|
||||
swap_edges(p1_index, p4_index, points)
|
||||
swaps.append([p1_index, p4_index])
|
||||
new_total = total_distance(points)
|
||||
print("Current distance", new_total)
|
||||
r = k_opt(p1_index, points, ignore_list, list(swaps))
|
||||
r.append((new_total, swaps))
|
||||
return r
|
||||
|
||||
|
||||
def local_search_k_opt(points):
|
||||
current_total = total_distance(points)
|
||||
ignore_list = []
|
||||
while True:
|
||||
points_before_change = list(points)
|
||||
try:
|
||||
points = local_search(points, ignore_list)
|
||||
except UnboundLocalError:
|
||||
print()
|
||||
print("--- new iteration ---")
|
||||
print("Ignored points", [p.name for p in ignore_list])
|
||||
point, index = longest_distance(points, ignore_list)
|
||||
if not point:
|
||||
print("No more points")
|
||||
break
|
||||
is_valid(points, num_nodes)
|
||||
value = total_length(points)
|
||||
|
||||
# plot_graph(points_before_change)
|
||||
is_valid(points, num_nodes)
|
||||
ignore_list.append(point)
|
||||
print("Next point (longest_distance)", point)
|
||||
|
||||
r = k_opt(index, list(points), [], [])
|
||||
print("k-opt", len(r))
|
||||
if not r:
|
||||
print("Found no better solution.")
|
||||
continue
|
||||
|
||||
new_total, steps = min(r)
|
||||
|
||||
print("new_total", new_total, "current_total", current_total)
|
||||
if new_total < current_total:
|
||||
print("Improvment. Apply steps.")
|
||||
for step in steps:
|
||||
swap_edges(*step, points)
|
||||
assert(total_distance(points) == new_total)
|
||||
current_total = new_total
|
||||
ignore_list = []
|
||||
else:
|
||||
print("No changes.")
|
||||
plot_graph(points)
|
||||
return points
|
||||
|
||||
|
||||
def solve_it(input_data):
|
||||
points = parse_input_data(input_data)
|
||||
num_points = len(points)
|
||||
#points = reorder_points_greedy(points)
|
||||
local_search_k_opt(points)
|
||||
|
||||
# plot_graph(points)
|
||||
return prepare_output_data(points)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
file_location = "data/tsp_200_2"
|
||||
file_location = "data/tsp_51_1"
|
||||
# DEBUG = True
|
||||
with open(file_location, 'r') as input_data_file:
|
||||
input_data = input_data_file.read()
|
||||
print(solve_it(input_data))
|
||||
|
Loading…
Reference in New Issue
Block a user