147 lines
3.7 KiB
Python
147 lines
3.7 KiB
Python
|
from lib import *
|
||
|
from collections import deque
|
||
|
|
||
|
EXAMPLE = """#.#####################
|
||
|
#.......#########...###
|
||
|
#######.#########.#.###
|
||
|
###.....#.>.>.###.#.###
|
||
|
###v#####.#v#.###.#.###
|
||
|
###.>...#.#.#.....#...#
|
||
|
###v###.#.#.#########.#
|
||
|
###...#.#.#.......#...#
|
||
|
#####.#.#.#######.#.###
|
||
|
#.....#.#.#.......#...#
|
||
|
#.#####.#.#.#########v#
|
||
|
#.#...#...#...###...>.#
|
||
|
#.#.#v#######v###.###v#
|
||
|
#...#.>.#...>.>.#.###.#
|
||
|
#####v#.#.###v#.#.###.#
|
||
|
#.....#...#...#.#.#...#
|
||
|
#.#########.###.#.#.###
|
||
|
#...###...#...#...#.###
|
||
|
###.###.#.###v#####v###
|
||
|
#...#...#.#.>.>.#.>.###
|
||
|
#.###.###.#.###.#.#v###
|
||
|
#.....###...###...#...#
|
||
|
#####################.#
|
||
|
"""
|
||
|
|
||
|
SLOPES = {
|
||
|
"^": (-1, 0),
|
||
|
">": (0, 1),
|
||
|
"v": (1, 0),
|
||
|
"<": (0, -1),
|
||
|
}
|
||
|
|
||
|
def first(input):
|
||
|
g = input.grid2()
|
||
|
start = (0, 1)
|
||
|
end = (g.n_rows - 1, g.n_cols - 2)
|
||
|
longest = 0
|
||
|
paths = [(set([start]), start)]
|
||
|
while True:
|
||
|
new_paths = []
|
||
|
for p in paths:
|
||
|
hist, pos = p
|
||
|
for d in g.COORDS_ORTH:
|
||
|
nb = add2(pos, d)
|
||
|
if nb[0] < 0 or nb[0] >= g.n_rows or nb[1] < 0 or nb[1] >= g.n_cols:
|
||
|
continue
|
||
|
c = g[nb]
|
||
|
if c in SLOPES.keys() and d != SLOPES[c]:
|
||
|
continue
|
||
|
if c == "#" or nb in hist:
|
||
|
continue
|
||
|
if nb == end:
|
||
|
l = len(hist)
|
||
|
if l > longest:
|
||
|
longest = l
|
||
|
continue
|
||
|
nhist = hist.copy()
|
||
|
nhist.add(nb)
|
||
|
new_paths.append((nhist, nb))
|
||
|
paths = new_paths
|
||
|
if len(paths) == 0:
|
||
|
break
|
||
|
return longest
|
||
|
|
||
|
def solve(input: Input, second=False):
|
||
|
if not second:
|
||
|
return first(input)
|
||
|
|
||
|
g = input.grid2()
|
||
|
start = (0, 1)
|
||
|
end = (g.n_rows - 1, g.n_cols - 2)
|
||
|
|
||
|
seen = set()
|
||
|
q = deque([[start, (1, 1)]])
|
||
|
|
||
|
# The intuition is that we can brute force much quicker if we have a pure
|
||
|
# graph instead of following the maze along the whole time. So, we create
|
||
|
# a graph from the maze and then brute force on the maze.
|
||
|
sg = {start: set()} # {node: {(node, dist), ...}}
|
||
|
|
||
|
while q:
|
||
|
trail = q.popleft()
|
||
|
pos = trail[-1]
|
||
|
while True:
|
||
|
nbs = []
|
||
|
for d in g.COORDS_ORTH:
|
||
|
nb = add2(pos, d)
|
||
|
if nb[0] < 0 or nb[0] >= g.n_rows or nb[1] < 0 or nb[1] >= g.n_cols:
|
||
|
continue
|
||
|
if g[nb] == "#" or nb == trail[-2]:
|
||
|
continue
|
||
|
nbs.append(nb)
|
||
|
if len(nbs) == 1:
|
||
|
pos = nbs[0]
|
||
|
trail.append(pos)
|
||
|
else:
|
||
|
break
|
||
|
|
||
|
if not pos in sg:
|
||
|
sg[pos] = set()
|
||
|
|
||
|
dist = len(trail) - 1
|
||
|
sg[trail[0]].add((pos, dist))
|
||
|
sg[pos].add((trail[0], dist))
|
||
|
|
||
|
seen.add(pos)
|
||
|
for nb in nbs:
|
||
|
if not nb in seen:
|
||
|
seen.add(nb)
|
||
|
q.append([pos, nb])
|
||
|
|
||
|
# for key, value in sg.items():
|
||
|
# print(key, value)
|
||
|
|
||
|
# Brute force in bf order.
|
||
|
longest = 0
|
||
|
q = deque([(set(), start, 0)])
|
||
|
while q:
|
||
|
hist, pos, dist = q.popleft()
|
||
|
if pos == end:
|
||
|
if dist > longest:
|
||
|
longest = dist
|
||
|
continue
|
||
|
|
||
|
for nb, d in sg[pos]:
|
||
|
if nb in hist:
|
||
|
continue
|
||
|
nhist = hist.copy()
|
||
|
nhist.add(nb)
|
||
|
q.append((nhist, nb, dist + d))
|
||
|
|
||
|
return longest
|
||
|
|
||
|
|
||
|
def main():
|
||
|
DAY_INPUT = "i23.txt"
|
||
|
# print("Example 1:", solve(Input(EXAMPLE)))
|
||
|
# print("Solution 1:", solve(Input(DAY_INPUT)))
|
||
|
print("Example 2:", solve(Input(EXAMPLE), True))
|
||
|
print("Solution 2:", solve(Input(DAY_INPUT), True))
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|