SICP/shared/util.scm
2021-04-25 08:57:17 -04:00

133 lines
3.1 KiB
Scheme

(define (assert a b)
(cond ((equal? a b) (display "[ok]"))
(else
(display "[error] ")
(display a)
(display " != ")
(display b)))
(newline))
; I have this here to avoid name-conflicts with the amb implementation in
; amb.scm.
(define (my-assert a b)
(cond ((equal? a b) (display "[ok]"))
(else
(display "[error] ")
(display a)
(display " != ")
(display b)))
(newline))
(define (gcd a b)
(if (= b 0) (abs a) (gcd b (remainder a b))))
(define (average a b) (/ (+ a b) 2.0))
(define (id n) n)
(define identity id)
(define (inc n) (+ n 1))
(define nil '())
(define (divides? a b) (= (remainder b a) 0))
(define (cube n) (* n n n))
(define (even? n) (= (remainder n 2) 0))
(define (odd? n) (= (remainder n 2) 1))
; copied prime? from 1.21
(define (find-divisor n test-divisor)
(cond ((> (square test-divisor) n) n)
((divides? test-divisor n) test-divisor)
(else (find-divisor n (+ test-divisor 1)))))
(define (smallest-divisor n)
(find-divisor n 2))
(define (prime? n) (if (= n 1) #f (= n (smallest-divisor n))))
; https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-15.html
(define (enumerate-interval low high)
(if (> low high)
nil
(cons low (enumerate-interval (+ low 1) high))))
; Returns #t if there is no #f in xs, otherwise returns #f.
(define (all? xs)
(cond ((null? xs) #t)
((eq? (car xs) #f) #f)
(else (all? (cdr xs)))))
(define (all-eq? xs)
(cond ((null? xs) #t)
((null? (cdr xs)) #t)
((eq? (car xs) (cadr xs)) (all-eq? (cdr xs)))
(else #f)))
(define (fold-right op initial sequence) ; same as accumulate
(if (null? sequence)
initial
(op (car sequence)
(fold-right op initial (cdr sequence)))))
; From exercise 3.5
(define (random-in-range low high)
(let ((range (- high low)))
(+ low (random range))))
(define (contains x xs)
(cond
((null? xs) #f)
((eq? x (car xs)) #t)
(else (contains x (cdr xs)))))
(define (display-line x)
(display x)
(newline))
(define (take n xs)
(if (= n 0)
'()
(cons (stream-car xs)
(take (- n 1) (stream-cdr xs)))))
(define (drop n xs)
(if (= n 0)
xs
(drop (- n 1) (stream-cdr xs))))
(define (find item stream)
(define (iter n stream)
(if (equal? (stream-car stream) item)
n
(iter (+ n 1) (stream-cdr stream))))
(iter 0 stream))
(define (display-stream s)
(stream-for-each display-line s))
(define (show x)
(display-line x)
x)
(define (stream-ref s n)
(if (= n 0)
(stream-car s)
(stream-ref (stream-cdr s) (- n 1))))
(define (partial-sums xs)
(cons-stream (stream-car xs)
(add-streams (partial-sums xs)
(stream-cdr xs))))
(define (scale-stream stream factor)
(stream-map (lambda (x) (* x factor)) stream))
(define (add-streams s1 s2)
(stream-map + s1 s2))
(define (list->stream xs)
(if (null? xs)
'()
(cons-stream (car xs) (list->stream (cdr xs)))))
(define ones (cons-stream 1 ones))
(define integers (cons-stream 1 (add-streams ones integers)))
'util-loaded