SICP/ex-4_35-44.scm
2021-04-25 08:57:17 -04:00

335 lines
12 KiB
Scheme

(load "shared/util.scm")
(load "shared/lib-amb.scm")
(define (require p)
(if (not p) (amb)))
(define (an-element-of items)
(require (not (null? items)))
(amb (car items) (an-element-of (cdr items))))
(define (an-integer-starting-from n)
(amb n (an-integer-starting-from (+ n 1))))
(display "\nex-4.35 - an-integer-between\n")
(define (an-integer-between a b)
(require (<= a b))
(amb a (an-integer-between (+ a 1) b)))
(define (a-pythagorean-triple-between low high)
(let ((i (an-integer-between low high)))
(let ((j (an-integer-between i high)))
(let ((k (an-integer-between j high)))
(require (= (+ (* i i) (* j j)) (* k k)))
(list i j k)))))
(display "[done]\n")
(display "\nex-4.36 - all-pythagorean-triples\n")
; If we replace an-integer-between with an-integer-starting-from the variables
; i and j will stay at their initial value 1 while k will increment endlessly.
; Hence, only triplets of the form (1 1 n) will be generated.
(define (all-pythagorean-triples)
(let ((i (an-integer-starting-from 1)))
(let ((j (an-integer-starting-from i)))
(let ((k (an-integer-starting-from j)))
(require (= (+ (* i i) (* j j)) (* k k)))
(list i j k)))))
(define (all-pythagorean-triples)
(let ((k (an-integer-starting-from 1)))
(let ((i (an-integer-between 1 k)))
(let ((j (an-integer-between i k)))
(require (= (+ (* i i) (* j j)) (* k k)))
(list i j k)))))
; Note: It would be more efficient to choose to integers and then calculate if
; (+ (* i i) (* j j)) is a perfect square.
(display "[done]\n")
(display "\nex-4.37 - more-efficient-pythagorean-triples\n")
(define (a-pythagorean-triple-between low high)
(let ((i (an-integer-between low high))
(hsq (* high high)))
(let ((j (an-integer-between i high)))
(let ((ksq (+ (* i i) (* j j))))
(require (>= hsq ksq))
(let ((k (sqrt ksq)))
(require (integer? k))
(list i j k))))))
; This implementation uses my note from the previous exercises. Computing sqrt
; and checking for integer is faster ultimately, because the majority of
; combinations are not solutions.
(display "[answered]\n")
(display "\nex-4.38 - multiple-dwelling\n")
(define (distinct? items)
(cond ((null? items) true)
((null? (cdr items)) true)
((member (car items) (cdr items)) false)
(else (distinct? (cdr items)))))
(define (multiple-dwelling)
(let ((baker (amb 1 2 3 4 5))
(cooper (amb 1 2 3 4 5))
(fletcher (amb 1 2 3 4 5))
(miller (amb 1 2 3 4 5))
(smith (amb 1 2 3 4 5)))
(require (distinct? (list baker cooper fletcher miller smith)))
(require (not (= baker 5)))
(require (not (= cooper 1)))
(require (not (= fletcher 5)))
(require (not (= fletcher 1)))
(require (> miller cooper))
(require (not (= (abs (- smith fletcher)) 1))) ; adjacent floors constraint
(require (not (= (abs (- fletcher cooper)) 1)))
(list (list 'baker baker)
(list 'cooper cooper)
(list 'fletcher fletcher)
(list 'miller miller)
(list 'smith smith))))
(my-assert (multiple-dwelling)
'((baker 3) (cooper 2) (fletcher 4) (miller 5) (smith 1)))
(define (multiple-dwelling-removed)
(let ((baker (amb 1 2 3 4 5))
(cooper (amb 1 2 3 4 5))
(fletcher (amb 1 2 3 4 5))
(miller (amb 1 2 3 4 5))
(smith (amb 1 2 3 4 5)))
(require (distinct? (list baker cooper fletcher miller smith)))
(require (not (= baker 5)))
(require (not (= cooper 1)))
(require (not (= fletcher 5)))
(require (not (= fletcher 1)))
(require (> miller cooper))
;; (require (not (= (abs (- smith fletcher)) 1))) ; adjacent floors constraint
(require (not (= (abs (- fletcher cooper)) 1)))
(list (list 'baker baker)
(list 'cooper cooper)
(list 'fletcher fletcher)
(list 'miller miller)
(list 'smith smith))))
; There are five solutions when the adjacent floor constraint for smith and
; fletcher is removed.
(my-assert (length (set-of (multiple-dwelling-removed))) 5)
(display "\nex-4.39 - multiple-dwelling-ordering\n")
; The ordering does not matter because the interpreter first evaluates all ambs
; and then runs the checks. The interpreter will check all combinations even if
; they cannot yield a possible solution, such as (fletcher 1). To avoid this one
; would have to interleave the amb expression and the checks.
(display "[answered]\n")
(define (repeat proc n)
(if (= n 0)
't
(begin
(proc)
(repeat proc (- n 1)))))
(let ((start-time (runtime)))
(repeat multiple-dwelling 10)
(display "[default = ")
(display (- (runtime) start-time))
(display "]\n"))
(display "\nex-4.40 - multiple-dwelling-improved\n")
(define (multiple-dwelling)
(let ((baker (amb 1 2 3 4 5)))
(require (not (= baker 5)))
(let ((cooper (amb 1 2 3 4 5)))
(require (distinct? (list baker cooper)))
(require (not (= baker cooper)))
(require (not (= cooper 1)))
(let ((fletcher (amb 1 2 3 4 5)))
(require (distinct? (list baker cooper fletcher)))
(require (not (= cooper fletcher)))
(require (not (= fletcher 5)))
(require (not (= fletcher 1)))
(let ((miller (amb 1 2 3 4 5)))
(require (distinct? (list baker cooper fletcher miller)))
(require (not (= fletcher miller)))
(require (> miller cooper))
(require (not (= (abs (- fletcher cooper)) 1)))
(let ((smith (amb 1 2 3 4 5)))
(require (distinct? (list baker cooper fletcher miller smith)))
(require (not (= (abs (- smith fletcher)) 1)))
(list (list 'baker baker)
(list 'cooper cooper)
(list 'fletcher fletcher)
(list 'miller miller)
(list 'smith smith))))))))
(my-assert (multiple-dwelling)
'((baker 3) (cooper 2) (fletcher 4) (miller 5) (smith 1)))
(let ((start-time (runtime)))
(repeat multiple-dwelling 10)
(display "[improved = ")
(display (- (runtime) start-time))
(display "]\n"))
(display "\nex-4.41 - multiple-dwelling-ordinary\n")
; Appand all ys to xs.
(define (append-all xs ys)
(map (lambda (y) (append xs (list y))) ys))
(define (available-floors dwelling)
(filter (lambda (x) (not (memq x dwelling))) '(1 2 3 4 5)))
(define (flatten xss)
(if (null? xss)
xss
(if (pair? (car (car xss)))
(reduce append '() xss)
xss)))
(define (multiple-dwelling-ordinary)
(define baker first)
(define cooper second)
(define fletcher third)
(define miller fourth)
(define smith fifth)
(define (dwellings dwelling constraints)
(if (null? constraints)
dwelling
(let ((new-dwellings (filter (car constraints)
(append-all dwelling (available-floors dwelling)))))
(flatten (filter
(lambda (x) (not (null? x)))
(map (lambda (dwelling) (dwellings dwelling (cdr constraints))) new-dwellings))))))
(define constraints
(list
(lambda (dwelling) (not (= (baker dwelling) 5)))
(lambda (dwelling) (not (= (cooper dwelling) 1)))
(lambda (dwelling) (and (not (= (fletcher dwelling) 5))
(not (= (fletcher dwelling) 1))))
(lambda (dwelling) (and (> (miller dwelling) (cooper dwelling))
(not (= (abs (- (fletcher dwelling) (cooper dwelling))) 1))))
(lambda (dwelling) (not (= (abs (- (smith dwelling) (fletcher dwelling))) 1)))
;(lambda (dwelling) #t) ; no adjacent floor constraint for smith and fletcher
))
(define (tag-result xs)
(map (lambda (name number) (list name number))
'(baker cooper fletcher miller smith)
xs))
(map tag-result (dwellings '() constraints)))
(my-assert (multiple-dwelling)
(car (multiple-dwelling-ordinary)))
(display "\nex-4.42 - liars-puzzle\n")
(define (xor p q)
(require (or (and p (not q)) (and (not p) q))))
(define (liars-puzzle)
(let ((ethel (an-integer-between 1 5))
(joan (an-integer-between 1 5)))
(xor (= ethel 1) (= joan 2))
(xor (= joan 3) (= ethel 5))
(let ((kitty (an-integer-between 1 5))
(betty (an-integer-between 1 5))
(mary (an-integer-between 1 5)))
(xor (= kitty 2) (= betty 3))
(xor (= kitty 2) (= mary 4))
(xor (= mary 4) (= betty 1))
(require (distinct? (list kitty betty ethel joan mary)))
(map list '(kitty betty ethel joan mary) (list kitty betty ethel joan mary)))))
(display (liars-puzzle)) (newline)
; My solution to this problem was previously wrong because I didn't check for
; the either or conditions at the same step of the search. Consequently, a true
; statement of one student could be a false statement of the other student.
; This cannot happen when we check at the same time.
(display "\nex-4.43 - lornas-father\n")
; (daughter father yacht)
(define daughter first)
(define father second)
(define yacht third)
(define (lornas-father)
(let* ((moore-daughter (amb 'mary-ann))
(moore-yacht (amb 'lorna))
(moore (list moore-daughter 'moore moore-yacht)))
(let* ((downing-daughter (amb 'gabrielle 'lorna 'rosalind))
(downing-yacht (amb 'melissa))
(downing (list downing-daughter 'downing downing-yacht)))
(require (distinct? (list moore-daughter downing-daughter)))
(require (distinct? (list moore-yacht downing-yacht)))
(require (distinct? (list downing-yacht downing-daughter)))
(let* ((hall-daughter (amb 'gabrielle 'lorna 'melissa))
(hall-yacht (amb 'rosalind))
(hall (list hall-daughter 'hall hall-yacht)))
(require (distinct? (list hall-yacht hall-daughter)))
(require (distinct? (list moore-daughter downing-daughter hall-daughter)))
(require (distinct? (list moore-yacht downing-yacht hall-yacht)))
(let* ((barnacle-daughter (amb 'melissa))
(barnacle-yacht (amb 'gabrielle))
(barnacle (list barnacle-daughter 'barnacle barnacle-yacht)))
(require (distinct? (list barnacle-yacht barnacle-daughter)))
(require (distinct? (list moore-daughter downing-daughter hall-daughter barnacle-daughter)))
(require (distinct? (list moore-yacht downing-yacht hall-yacht barnacle-yacht)))
(let* ((parker-daughter (amb 'gabrielle 'lorna 'rosalind 'melissa))
(parker-yacht (amb 'mary-ann 'gabrielle 'lorna 'rosalind 'melissa))
(parker (list parker-daughter 'parker parker-yacht)))
(require (distinct? (list parker-yacht parker-daughter)))
(require (distinct? (list moore-daughter downing-daughter hall-daughter barnacle-daughter parker-daughter)))
(require (distinct? (list moore-yacht downing-yacht hall-yacht barnacle-yacht parker-yacht)))
(require (eq? parker-daughter (yacht (assoc 'gabrielle (list moore downing hall barnacle parker)))))
(father (assoc 'lorna (list moore downing hall barnacle parker)))))))))
(my-assert (lornas-father) 'downing)
(display "\nex-4.44 - eight-queens\n")
; Copied from ex-2_33-43.scm
(define (safe? board)
(define (valid-position row diag board)
(if (null? board)
#t
(let ((cur_row (car board)))
(if (or (= row cur_row) ; same row
(= (+ row diag) cur_row) ; upper right diagonal
(= (- row diag) cur_row)) ; lower left diagonal
#f
(valid-position row (+ diag 1) (cdr board))))))
(valid-position (car board) 1 (cdr board)))
(define (queens)
(define (positions)
(amb 1 2 3 4 5 6 7 8))
(define (queens-iter board remaining)
(if (= remaining 0)
board
(let* ((current-queen (positions))
(new-board (cons current-queen board)))
(require (safe? new-board))
(queens-iter new-board (- remaining 1)))))
(queens-iter '() 8))
(my-assert (queens) '(4 2 7 3 6 8 5 1))
(my-assert (length (set-of (queens))) 92)