SICP/ex-4_11-21.scm
2021-04-25 08:57:17 -04:00

404 lines
12 KiB
Scheme

(load "shared/util.scm")
(load "shared/sicp-evaluator.scm")
(display "\nex-4.11 - alternative-frame-implementation\n")
; Test implementation from book.
(define env-0 the-empty-environment)
(define env-1 (extend-environment '(a b) '(1 2) env-0))
(define env-2 (extend-environment '(c d) '(3 4) env-1))
(assert (lookup-variable-value 'b env-2) 2)
(set-variable-value! 'b 42 env-2)
(assert (lookup-variable-value 'b env-2) 42)
(define-variable! 'e 5 env-2)
(assert (lookup-variable-value 'e env-2) 5)
(define (make-frame variables values)
(map cons variables values))
(define (frame-variables frame) (map car frame))
(define (frame-values frame) (map cdr frame))
(define (add-binding-to-frame! var val frame)
(if (null? (cdr frame))
(set-cdr! frame (cons (cons var val) '()))
(add-binding-to-frame! var val (cdr frame))))
(define frame-var car)
(define frame-val cdr)
(define (lookup-variable-value var env)
(define (env-loop env)
(define (scan vars vals)
(cond ((null? vars)
(env-loop (enclosing-environment env)))
((eq? var (car vars))
(car vals))
(else (scan (cdr vars) (cdr vals)))))
(if (eq? env the-empty-environment)
(error "Unbound variable" var)
(let ((frame (first-frame env)))
(scan (frame-variables frame)
(frame-values frame)))))
(env-loop env))
(define (set-variable-value! var val env)
(define (env-loop env)
(define (scan frame)
(cond ((null? frame)
(env-loop (enclosing-environment env)))
((eq? var (frame-var (car frame)))
(set-cdr! (car frame) val))
(else (scan (cdr frame)))))
(if (eq? env the-empty-environment)
(error "Unbound variable -- SET!" var)
(let ((frame (first-frame env)))
(scan frame))))
(env-loop env))
(define (define-variable! var val env)
(let ((frame (first-frame env)))
(define (scan frame)
(cond ((null? frame)
(add-binding-to-frame! var val (first-frame env)))
((eq? var (frame-var (car frame)))
(set-cdr! (car frame) val))
(else (scan (cdr frame)))))
(scan frame)))
(define env-0 the-empty-environment)
(define env-1 (extend-environment '(a b) '(1 2) env-0))
(define env-2 (extend-environment '(c d) '(3 4) env-1))
(assert (lookup-variable-value 'b env-2) 2)
(set-variable-value! 'b 42 env-2)
(assert (lookup-variable-value 'b env-2) 42)
(define-variable! 'e 5 env-2)
(assert (lookup-variable-value 'e env-2) 5)
(display "\nex-4.12 - abstract-traversal\n")
(define (find-pair-frame var frame)
(assoc var frame))
(define (find-pair-env var env)
(define (env-loop env)
(if (eq? env the-empty-environment)
#f
(let ((pair (assoc var (first-frame env))))
(if (pair? pair)
pair
(env-loop (enclosing-environment env))))))
(env-loop env))
(define (lookup-variable-value var env)
(let ((pair (find-pair-env var env)))
(if (eq? pair #f)
(error "Unbound variable" var)
(frame-val pair))))
(define (set-variable-value! var val env)
(let ((pair (find-pair-env var env)))
(if (pair? pair)
(set-cdr! pair val)
'())))
(define (define-variable! var val env)
(let ((frame (first-frame env)))
(let ((pair (assoc var frame)))
(if (pair? pair)
(set-cdr! pair val)
(add-binding-to-frame! var val frame)))))
(define env-0 the-empty-environment)
(define env-1 (extend-environment '(a b) '(1 2) env-0))
(define env-2 (extend-environment '(c d) '(3 4) env-1))
(assert (find-pair-env 'd env-2) (cons 'd 4))
(assert (lookup-variable-value 'b env-2) 2)
(set-variable-value! 'b 42 env-2)
(assert (lookup-variable-value 'b env-2) 42)
(define-variable! 'e 5 env-2)
(assert (lookup-variable-value 'e env-2) 5)
(display "\nex-4.13 - make-unbound!\n")
; It seems like the reason for removing a binding is when one wants get access
; to the same symbol in an outer environment. Therefore, we implement
; make-unbound! so that it only deletes the symbol from the first frame in
; which it is defined.
(define (frame-without-var var frame)
(cond
((null? frame) '())
((eq? var (frame-var (car frame))) (cdr frame))
(else (cons (car frame) (frame-without-var var (cdr frame))))))
(define (make-unbound-first! var env)
(let ((len (length (first-frame env))))
(set-car! env (frame-without-var var (first-frame env)))
(if (= len (length (first-frame env)))
#f
#t)))
(assert (make-unbound-first! 'd env-2) #t)
(assert (make-unbound-first! 'e env-2) #t)
(assert (make-unbound-first! 'b env-2) #f)
(assert (make-unbound-first! 'c env-2) #t)
(assert (first-frame env-2) '())
(define (make-unbound! var env)
(define (loop env)
(if (eq? env the-empty-environment)
#f
(if (make-unbound-first! var env)
#t
(loop (enclosing-environment env)))))
(loop env))
(define env-0 the-empty-environment)
(define env-1 (extend-environment '(a b) '(1 2) env-0))
(define env-2 (extend-environment '(c d) '(3 4) env-1))
(define env-3 (extend-environment '(a b) '(3 6) env-2))
(assert (lookup-variable-value 'b env-3) 6)
(assert (make-unbound! 'b env-3) #t)
(assert (lookup-variable-value 'b env-3) 2)
(assert (make-unbound! 'b env-3) #t)
(assert (make-unbound! 'b env-3) #f)
(display "\nex-4.14 - map\n")
; Louis's implementation of map will not work because the evaluator will
; evaluate the lambda expression into a procedure list. The Scheme interpreter
; does not know how to evaluate that list. Hence, the operation fails.
(display "[answered]\n")
(display "\nex-4.15 - halts?\n")
(define (run-forever) (run-forever))
(define (try p)
(if (halts? p p)
(run-forever)
'halted))
; Suppose (try try) runs forever then halts? evaluates to wrong and try returns
; halt. That is a contradiction. Suppose (try try) halts. Then halts? evaluates
; to true and try runs forever; again a contradiction. Therefore, a general
; procedure halts? cannot exist.
(display "[answered]\n")
(display "\nex-4.16 - scan-out-defines\n")
(define (lookup-variable-value var env)
(let ((pair (find-pair-env var env)))
(if (eq? pair #f)
(error "Unbound variable" var)
(let ((value (frame-val pair)))
(if (eq? value '*unassigned*)
(error "Unassigned variable" var)
value)))))
(define (scan-out-defines body)
(define (get-defines body)
(cond
((null? body) '())
((definition? (car body)) (cons (car body) (get-defines (cdr body))))
(else (get-defines (cdr body)))))
(define (expression->new-expression exp)
(if (definition? exp)
(define->set exp)
exp))
(define (define->let-assignment def)
(list (definition-variable def) '*unassigned*))
(define (define->set def)
(list 'set! (definition-variable def) (definition-value def)))
(let* ((defines (get-defines body))
(let-assignments (map define->let-assignment defines))
(let-expression (list 'let let-assignments))
(expressions (map expression->new-expression body)))
(append let-expression expressions)))
(define body
'((define x 3)
(if #t 1 2)
(define b 2)
(display "hello")))
(define body-transformed
'(let ((x *unassigned*)
(b *unassigned*))
(set! x 3)
(if #t 1 2)
(set! b 2)
(display "hello")))
(assert (scan-out-defines body) body-transformed)
; I would install scan-out-defines into make-procedure. We might run into a
; situation where we update the body of a procedure and call procedure-body
; twice.
(define (make-procedure parameters body env)
(list 'procedure parameters (scan-out-defines body) env))
(display "\nex-4.17 - extra-frame\n")
; Why is there an extra frame in the transformed program? We have implemented
; let via an additional transformation. Therefore, there is another
; lambda-expression that results in an extra frame.
; Explain why this difference in environment structure can never make a
; difference in the behavior of a correct program? The transformation keeps the
; order of the assignments. Hence, the behavior will not change.
; Design a way to make the interpreter implement the ``simultaneous'' scope
; rule for internal definitions without constructing the extra frame? We could
; simply add a list of (define symbol *unassigned*) at the beginning of the
; body and get the same behavior without an extra frame.
(display "[answered]\n")
(display "\nex-4.18 - alternative-scan-out\n")
(define (solve f y0 dt)
(define y (integral (delay dy) y0 dt))
(define dy (stream-map f y))
y)
; Transformation from text:
(lambda (f y0 dt)
(let ((y '*unassigned*)
(dy '*unassigned*))
(set! y (integral (delay dy) y0 dt))
(set! dy (stream-map f y))
y))
; Transformation from this exercise:
(lambda (f y0 dt)
(let ((y '*unassigned*)
(dy '*unassigned*))
(let ((a (integral (delay dy) y0 dt))
(b (stream-map f y)))
(set! y a)
(set! dy b)
y)))
; The second transformation will not work because when b is evaluated y is not
; yet assigned. The first transformation works because y was already set when
; dy is set.
(display "[answered]\n")
(display "\nex-4.19 - ambiguous-expression\n")
; (let ((a 1))
; (define (f x)
; (define b (+ a x))
; (define a 5)
; (+ a b))
; (f 10))
; Ben: 16
; Alyssa: error
; Eva: 20
; To implement Eva's suggested behavior one could reorder the defines so that
; defines with self-evaluating expressions are interpreted first.
(display "[answered]\n")
(display "\nex-4.20 - letrec\n")
(letrec ((fact
(lambda (n)
(if (= n 1)
1
(* n (fact (- n 1)))))))
(assert (fact 10) 3628800))
(define letrec-before
'(letrec ((a 3) (b 2))
(+ a b)))
(define letrec-after
'(let ((a *unassigned*) (b *unassigned*))
(set! a 3)
(set! b 2)
(+ a b)))
(define (letrec? exp) (tagged-list exp 'letrec))
(define (letrec-bindings exp) (cadr exp))
(define (letrec-body exp) (cddr exp))
(define (letrec-binding-var binding) (car binding))
(define (letrec-binding-exp binding) (cadr binding))
(define (letrec-vars exp) (map let-binding-var (let-bindings exp)))
(define (letrec-exps exp) (map let-binding-exp (let-bindings exp)))
(define (letrec->combination exp)
(define (binding->unassigned binding)
(list (letrec-binding-var binding) '*unassigned*))
(define (binding->set binding)
(list 'set! (letrec-binding-var binding) (letrec-binding-exp binding)))
(let* ((bindings (letrec-bindings exp))
(bindings-unassigned (map binding->unassigned bindings))
(let-unassigned (list 'let bindings-unassigned))
(set-exps (map binding->set bindings))
(body (letrec-body exp)))
(append
(append let-unassigned set-exps)
body)))
(assert (letrec->combination letrec-before) letrec-after)
; b. With the let implementation the procedures odd? and even? cannot see and
; therefore not call each other.
(display "\nex-4.21 - recursive-without-define/letrec\n")
; factorial
(assert
((lambda (n)
((lambda (fact)
(fact fact n))
(lambda (ft k)
(if (= k 1)
1
(* k (ft ft (- k 1)))))))
10)
3628800)
; a. Fibonacci
(define (fibo n)
(cond
((= n 0) 0)
((< n 3) 1)
(else (+ (fibo (- n 2)) (fibo (- n 1))))))
(assert
((lambda (n)
((lambda (fib)
(fib fib n))
(lambda (f k)
(cond
((= k 0) 0)
((< k 3) 1)
(else (+ (f f (- k 2)) (f f (- k 1))))))))
11)
(fibo 11))
; b. odd?/even?
(define (f x)
((lambda (even? odd?)
(even? even? odd? x))
(lambda (ev? od? n)
(if (= n 0) true (od? ev? od? (- n 1))))
(lambda (ev? od? n)
(if (= n 0) false (ev? ev? od? (- n 1))))))
(assert (f 31) false)
(assert (f 42) true)