SICP/ex-2_77-97.scm

1209 lines
43 KiB
Scheme

(load "shared/util.scm")
(display "\nexample - generic arithmetic operations\n")
; (define (display x) ())
; (define (newline) ())
; can be used to import stuff silently
; Put and get functions. We could have implemented this via a list of
; three-tuples, but I don't know how to create global variables yet so we just
; use this code from SO. Doesn't look too complicated.
; https://stackoverflow.com/questions/5499005/how-do-i-get-the-functions-put-and-get-in-sicp-scheme-exercise-2-78-and-on
(define *op-table* (make-hash-table))
(define (put op type proc)
(hash-table/put! *op-table* (list op type) proc))
(define (get op type)
(hash-table/get *op-table* (list op type) #f))
(define *coercion-table* (make-hash-table))
(define (put-coercion type1 type2 proc)
(hash-table/put! *coercion-table* (list type1 type2) proc))
(define (get-coercion type1 type2)
(hash-table/get *coercion-table* (list type1 type2) #f))
;; Helpers for generic arithmetic operations
(define (attach-tag type-tag contents)
(cond
((eq? type-tag 'scheme-number) contents)
(else (cons type-tag contents))))
(define (type-tag datum)
(cond
((number? datum) 'scheme-number)
((pair? datum) (car datum))
(else (error "Bad tagged datum -- TYPE-TAG" datum))))
(define (has-tag? datum)
(cond
((number? datum) #t)
((pair? datum) #t)
(else #f)))
(define (contents datum)
(cond
((number? datum) datum)
((pair? datum) (cdr datum))
(else (error "Bad tagged datum -- CONTENTS" datum))))
(define (apply-generic op . args)
(let ((type-tags (map type-tag args)))
(let ((proc (get op type-tags)))
(if proc
(apply proc (map contents args))
(error
"No method for these types -- APPLY-GENERIC"
(list op type-tags))))))
(define (install-scheme-number-package)
(define (tag x) x)
(define (scheme->rational x)
(make-rational x 1))
(define (gcd-scheme a b)
(if (and (integer? a) (integer? b))
(if (= b 0) (abs a) (gcd-scheme b (remainder a b)))
'nogcd))
(define (reduce-integers n d)
(if (and (integer? n) (integer? d))
(let ((g (gcd n d)))
(list (/ n g) (/ d g)))
'noreduce))
(put 'reduce '(scheme-number scheme-number)
(lambda (x y) (reduce-integers x y)))
(put 'add '(scheme-number scheme-number)
(lambda (x y) (tag (+ x y))))
(put 'sub '(scheme-number scheme-number)
(lambda (x y) (tag (- x y))))
(put 'mul '(scheme-number scheme-number)
(lambda (x y) (tag (* x y))))
(put 'div '(scheme-number scheme-number)
(lambda (x y) (tag (/ x y))))
(put 'equ? '(scheme-number scheme-number)
(lambda (x y) (= x y)))
(put 'exp '(scheme-number scheme-number)
(lambda (x y) (tag (expt x y))))
(put '=zero? '(scheme-number)
(lambda (x) (= x 0)))
(put 'negate '(scheme-number)
(lambda (x) (- x)))
(put 'make 'scheme-number
(lambda (x) (tag x)))
(put 'arctan '(scheme-number scheme-number)
(lambda (x y) (atan x y)))
(put 'square-root '(scheme-number) sqrt)
(put 'raise 'scheme-number scheme->rational)
(put 'gcd '(scheme-number scheme-number) gcd-scheme)
(display "[install-scheme-number-package]\n")
'done)
(define (install-rational-package)
;; internal procedures
(define (numer x) (car x))
(define (denom x) (cdr x))
(define (make-rat n d)
(let ((reduced (reduce n d)))
(if (eq? reduced 'noreduce)
(cons n d)
(cons (car reduced) (cadr reduced)))))
(define (add-rat x y)
(let ((new-n (add (mul (numer x) (denom y))
(mul (numer y) (denom x))))
(new-d (mul (denom x) (denom y))))
(make-rat new-n new-d)))
(define (sub-rat x y)
(make-rat (sub (mul (numer x) (denom y))
(mul (numer y) (denom x)))
(mul (denom x) (denom y))))
(define (mul-rat x y)
(make-rat (mul (numer x) (numer y))
(mul (denom x) (denom y))))
(define (div-rat x y)
(make-rat (mul (numer x) (denom y))
(mul (denom x) (numer y))))
(define (add3-rat x y z)
(add-rat (add-rat x y) z))
(define (equ?-rat x y)
(equ? (mul (numer x) (denom y))
(mul (numer y) (denom x))))
(define (rational->real x)
(let ((n (numer x))
(d (denom x)))
(cond
((and (number? n) (number? d))
(make-real (/ (numer x) (denom x))))
(else 'invalid))))
(define (rational->scheme x)
(let ((n (numer x)) (d (denom x)))
(cond
((and (number? n) (number? d))
(make-scheme-number (inexact->exact (round (/ (numer x) (denom x))))))
(else 'invalid))))
;; interface to rest of the system
(define (tag x) (attach-tag 'rational x))
(put 'add '(rational rational)
(lambda (x y) (tag (add-rat x y))))
(put 'add3 '(rational rational rational)
(lambda (x y z) (tag (add3-rat x y z))))
(put 'sub '(rational rational)
(lambda (x y) (tag (sub-rat x y))))
(put 'mul '(rational rational)
(lambda (x y) (tag (mul-rat x y))))
(put 'div '(rational rational)
(lambda (x y) (tag (div-rat x y))))
(put 'equ? '(rational rational) equ?-rat)
(put '=zero? '(rational)
(lambda (x) (= (numer x) 0)))
(put 'negate '(rational)
(lambda (x) (tag (make-rat (- (numer x))
(denom x)))))
(define (arctan-rational x y)
(atan (/ (numer x) (denom x))
(/ (numer y) (denom y))))
(put 'arctan '(rational rational) arctan-rational)
(put 'square-root '(rational)
(lambda (x) (sqrt (/ (numer x) (denom x)))))
(put 'make 'rational
(lambda (n d) (tag (make-rat n d))))
(put 'raise 'rational rational->real)
(put 'project 'rational rational->scheme)
(display "[install-rational-package]\n")
'done)
(define (install-real-package)
(define (make-real x) (tag x))
(define (real->rational x)
(make-rational x 1))
(define (real->complex x)
(make-complex-from-real-imag x 0))
(define (tag x)
(attach-tag 'real x))
(put 'add '(real real)
(lambda (x y) (tag (+ x y))))
(put 'sub '(real real)
(lambda (x y) (tag (- x y))))
(put 'mul '(real real)
(lambda (x y) (tag (* x y))))
(put 'div '(real real)
(lambda (x y) (tag (/ x y))))
(put 'equ? '(real real)
(lambda (x y) (= x y)))
(put 'exp '(real real)
(lambda (x y) (tag (expt x y))))
(put '=zero? '(real)
(lambda (x) (= x 0)))
(put 'make 'real
(lambda (x) (make-real x)))
(put 'raise 'real real->complex)
(put 'project 'real real->rational)
(display "[install-real-package]\n")
'done)
(define (install-rectangular-package)
(define (real-part z) (car z))
(define (imag-part z) (cdr z))
(define (square x) (mul x x))
(define (magnitude z)
(square-root (add (square (real-part z))
(square (imag-part z)))))
(define (angle z)
(arctan (imag-part z)
(real-part z)))
(define (tag z) (attach-tag 'rectangular z))
(define (make-from-real-imag x y)
(tag (cons x y)))
(define (make-from-mag-ang r a)
(tag (cons (mul r (cos a)) (mul r (sin a)))))
; interface to the rest of the system
(put 'real-part '(rectangular) real-part)
(put 'imag-part '(rectangular) imag-part)
(put 'magnitude '(rectangular) magnitude)
(put 'angle '(rectangular) angle)
(put '=zero? '(rectangular) (lambda (z) (= (real-part z) (imag-part z) 0)))
(put 'make-from-mag-ang 'rectangular make-from-mag-ang)
(put 'make-from-real-imag 'rectangular make-from-real-imag)
(display "[install-rectangular-package]\n")
'done)
(define (install-polar-package)
(define (real-part z)
(mul (magnitude z) (cos (angle z))))
(define (imag-part z)
(mul (magnitude z) (sin (angle z))))
(define (magnitude z) (car z))
(define (angle z) (cdr z))
(define (sqrt x) (mul x x))
(define (tag z) (attach-tag 'polar z))
(define (make-from-real-imag x y)
(tag (cons (sqrt (add (square x) (square y)))
(atan y x))))
(define (make-from-mag-ang r a) (tag (cons r a)))
; interface to rest of the system
(put 'real-part '(polar) real-part)
(put 'imag-part '(polar) imag-part)
(put 'magnitude '(polar) magnitude)
(put 'angle '(polar) angle)
(put '=zero? '(polar) (lambda (z) (= (magnitude z) 0)))
(put 'make-from-mag-ang 'polar make-from-mag-ang)
(put 'make-from-real-imag 'polar make-from-real-imag)
(display "[install-polar-package]\n")
'done)
(define (install-complex-package)
;; imported procedures from rectangular and polar packages
(define (make-from-real-imag x y)
((get 'make-from-real-imag 'rectangular) x y))
(define (make-from-mag-ang r a)
((get 'make-from-mag-ang 'polar) r a))
;; getters
(define (real-part z) (apply-generic 'real-part z))
(define (imag-part z) (apply-generic 'imag-part z))
(define (magnitude z) (apply-generic 'magnitude z))
(define (angle z) (apply-generic 'angle z))
;; internal procedures
(define (add-complex z1 z2)
(make-from-real-imag (add (real-part z1) (real-part z2))
(add (imag-part z1) (imag-part z2))))
(define (sub-complex z1 z2)
(make-from-real-imag (sub (real-part z1) (real-part z2))
(sub (imag-part z1) (imag-part z2))))
(define (mul-complex z1 z2)
(make-from-mag-ang (mul (magnitude z1) (magnitude z2))
(add (angle z1) (angle z2))))
(define (div-complex z1 z2)
(make-from-mag-ang (div (magnitude z1) (magnitude z2))
(sub (angle z1) (angle z2))))
(define (equ?-complex z1 z2)
(and (equ? (magnitude z1) (magnitude z2))
(equ? (angle z1) (angle z2))))
(define (negate-complex z)
(tag (make-from-real-imag (negate (real-part z))
(negate (imag-part z)))))
(define (complex->real x)
(make-real (real-part x)))
;; interface to rest of the system
(put 'real-part '(complex) real-part)
(put 'imag-part '(complex) imag-part)
(put 'magnitude '(complex) magnitude)
(put 'angle '(complex) angle)
(define (tag z) (attach-tag 'complex z))
(put 'add '(complex complex)
(lambda (z1 z2) (tag (add-complex z1 z2))))
(put 'sub '(complex complex)
(lambda (z1 z2) (tag (sub-complex z1 z2))))
(put 'mul '(complex complex)
(lambda (z1 z2) (tag (mul-complex z1 z2))))
(put 'div '(complex complex)
(lambda (z1 z2) (tag (div-complex z1 z2))))
(put 'make-from-real-imag 'complex
(lambda (x y) (tag (make-from-real-imag x y))))
(put 'make-from-mag-ang 'complex
(lambda (r a) (tag (make-from-mag-ang r a))))
(put 'equ? '(complex complex) equ?-complex)
(put '=zero? '(complex) =zero?)
(put 'negate '(complex) negate-complex)
(put 'project 'complex complex->real)
(display "[install-complex-package]\n")
'done)
;; constructors
(define (make-scheme-number n)
((get 'make 'scheme-number) n))
(define (make-rational n d)
((get 'make 'rational) n d))
(define (make-real n)
((get 'make 'real) n))
(define (make-complex-from-real-imag x y)
((get 'make-from-real-imag 'complex) x y))
(define (make-complex-from-mag-ang r a)
((get 'make-from-mag-ang 'complex) r a))
(define (real-part z) ((get 'real-part '(complex)) z))
(define (imag-part z) ((get 'imag-part '(complex)) z))
(define (magnitude z) ((get 'magnitude '(complex)) z))
(define (angle z) ((get 'angle '(complex)) z))
;; generic operations
(define (add x y) (apply-generic 'add x y))
(define (add3 x y z) (apply-generic 'add3 x y z))
(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))
(define (div x y) (apply-generic 'div x y))
(define (equ? x y) (apply-generic 'equ? x y))
(define (=zero? x) (apply-generic '=zero? x))
(define (exp x y) (apply-generic 'exp x y))
(define (arctan x y) (apply-generic 'arctan x y))
(define (square-root x) (apply-generic 'square-root x))
(define (negate x) (apply-generic 'negate x))
(define (gcd x y)
(if (procedure? (get 'gcd (list (type-tag x) (type-tag y))))
(apply-generic 'gcd x y)
'nogcd))
(define (reduce x y)
(if (procedure? (get 'reduce (list (type-tag x) (type-tag y))))
(apply-generic 'reduce x y)
'noreduce))
(install-scheme-number-package)
(install-rational-package)
(install-real-package)
(install-rectangular-package)
(install-polar-package)
(install-complex-package)
(assert (add (make-scheme-number 10) (make-scheme-number 20)) (make-scheme-number 30))
(define p1 (make-complex-from-mag-ang 14.142135623730951 0.7853981633974483))
(define e1 (make-complex-from-real-imag 10 10))
(assert (add e1 e1) (make-complex-from-real-imag 20 20))
(newline) (display "ex-2.77 - see comments") (newline)
; real-part (and all other selectors are implemented via calls to apply
; generic. The first call to apply generic has the type 'magnitude '(complex).
; By adding the code from Alyssa that call gets dispatched a second time which
; results in a call to apply generic with 'magnitude '(rectangular). This calls
; the actual magnitude function from the rectangular package.
(newline) (display "ex-2.78 - simplify scheme number") (newline)
; Solution at the beginning of this file.
(assert (add 5 3) 8)
(newline) (display "ex-2.79 - equ?") (newline)
; Extended each of the packages and defined generic procedure
(assert (equ? (make-scheme-number 10) (make-scheme-number 10)) #t)
(assert (equ? (make-rational 3 4) (make-rational 6 8)) #t)
(assert (equ? (make-complex-from-mag-ang 3 4) (make-complex-from-real-imag 6 8)) #f)
(assert (equ? p1 e1) #t) ; define above
(newline) (display "ex-2.80 - =zero?") (newline)
; Extended each of the packages and defined generic procedure
(assert (=zero? 0) #t)
(assert (=zero? 1) #f)
(assert (=zero? (make-rational 0 1)) #t)
(assert (=zero? (make-rational 1 1)) #f)
(assert (=zero? e1) #f)
(assert (=zero? p1) #f)
(newline) (display "ex-2.81 - Louis trying things") (newline)
(define (scheme-number->complex n)
(make-complex-from-real-imag (contents n) 0))
(put-coercion 'scheme-number 'complex scheme-number->complex)
(define (apply-generic op . args)
(let ((type-tags (map type-tag args)))
(let ((proc (get op type-tags)))
(if proc
(apply proc (map contents args))
(if (= (length args) 2)
(let ((type1 (car type-tags))
(type2 (cadr type-tags))
(a1 (car args))
(a2 (cadr args)))
(let ((t1->t2 (get-coercion type1 type2))
(t2->t1 (get-coercion type2 type1)))
(cond
((eq? type1 type2) (error "No need to coerce identical types"
(list op type-tags)))
(t1->t2 (apply-generic op (t1->t2 a1) a2))
(t2->t1 (apply-generic op a1 (t2->t1 a2)))
(else (error "No method for these types" (list op type-tags))))))
(error "No method for these types"
(list op type-tags)))))))
(display "[see comments]\n")
(assert (exp 3 3) 27)
(assert (add (make-scheme-number 3) (make-complex-from-real-imag 3 4))
(make-complex-from-real-imag 6 4))
; a. This is an endless loop. Louis change is not necessary, because if we
; coerce the arguments into the same type we would have found the respective
; procedure already.
; (define (scheme-number->scheme-number n) n)
; (define (complex->complex z) z)
; (put-coercion 'scheme-number 'scheme-number scheme-number->scheme-number)
; (put-coercion 'complex 'complex complex->complex)
; (exp (make-complex-from-real-imag 3 4) (make-complex-from-mag-ang 2 3))
; b. apply-generic already handles arguments of the same type correctly. It
; will simply not find a coercion procedure and return.
; c. added check for identical types to apply-generic. The following now just
; causes an error and no endless loop.
; (exp (make-complex-from-real-imag 3 4) (make-complex-from-mag-ang 2 3))
(newline) (display "ex-2.82 - multi argument coercion") (newline)
(define (scheme-number->rational n)
(make-rational (contents n) 1))
(put-coercion 'scheme-number 'rational scheme-number->rational)
(define (coerce-args target-type args)
(define (coerce-arg arg)
(let ((t1->t2 (get-coercion (type-tag arg) target-type)))
(if (procedure? t1->t2) (t1->t2 arg) arg)))
(map coerce-arg args))
(define (apply-generic op . args)
(define (try-args args-list)
(if (null? args-list)
(error "No method for these types" (list op (map type-tag args)))
(let ((proc (get op (map type-tag (car args-list))))
(args-contents (map contents (car args-list))))
(if (procedure? proc)
(apply proc args-contents)
(try-args (cdr args-list))))))
(define (coerce-to-arg arg)
(coerce-args (type-tag arg) args))
(try-args (cons args (map coerce-to-arg args))))
(assert (add3 (make-rational 1 3) 2 (make-rational 3 9)) (make-rational 8 3))
; This approach does not work if there exist procedures for mixed types or if
; the coerced type that would work is different from any of the existing
; arguments' types.
(display (coerce-args 'rational (list (make-rational 1 3) 2 3))) (newline)
(newline) (display "ex-2.83 - raise") (newline)
; Our scheme-number package supports real numbers so we use that as our
; real-number package without further changes. Additionally, we create an
; integer package that only accepts integers in the constructor.
(define (raise x)
((get 'raise (type-tag x)) (contents x)))
(assert (sub (make-scheme-number 3) (make-scheme-number 1)) (make-scheme-number 2))
(define i (make-scheme-number 3))
(display i) (newline)
(display (raise i)) (newline)
(display (raise (raise i))) (newline)
(display (raise (raise (raise i)))) (newline)
(newline) (display "ex-2.84") (newline)
; All we have to do is update coerce-args to do consecutive raises
; to reach the target type.
(define (coerce-args target-type args)
; (display "COERCE-ARGS ") (display target-type) (display " ") (display args) (newline)
(define (coerce-arg arg)
; (display "COERCE-ARG ") (display arg) (newline)
(if (eq? (type-tag arg) target-type)
arg
(let ((raise (get 'raise (type-tag arg))))
(if (procedure? raise)
(raise (contents arg))
arg))))
(let ((coerced-args (map coerce-arg args)))
(if (equal? args coerced-args)
coerced-args ; no more raising possible
(coerce-args target-type coerced-args))))
(assert (equ? (make-scheme-number 3) (make-complex-from-real-imag 3 0)) #t)
(assert (equ? (make-scheme-number 3) (make-complex-from-real-imag 3 1)) #f)
(assert (equ? (make-scheme-number 3) (make-rational 3 1)) #t)
(assert (add3 (make-rational 1 3) (make-scheme-number 2) (make-rational 3 9)) (make-rational 8 3))
(newline) (display "ex-2.85 - project and drop") (newline)
; Do not implement project in terms of apply-generic as that will result in an
; endless loop when trying to drop values later automatically within the
; context of apply-generic.
(define (project x)
((get 'project (type-tag x)) (contents x)))
(define c (make-complex-from-real-imag 4.2 1))
(display c) (newline)
(display (project c)) (newline)
(display (project (project c))) (newline)
(display (project (project (project c)))) (newline)
; Implement drop to transform number to lowest possible representation
(define (drop x)
; (display "DROP ") (display x) (newline)
(if (has-tag? x)
(let ((project (get 'project (type-tag x))))
(if (procedure? project)
(let ((projected (project (contents x))))
(cond
((eq? projected 'invalid) x)
((equ? projected x) (drop projected))
(else x)))
x))
x))
;(assert (drop 3) (make-scheme-number 3))
;(assert (drop (make-complex-from-real-imag 3.2 0)) (drop (make-real (/ 16 5.))))
;(assert (drop (make-complex-from-real-imag 3 0)) (make-scheme-number 3))
(define (apply-generic op . args)
; (display "APPLY-GENERIC ") (display op) (display " ") (display args) (newline)
(define (try-args args-list)
(if (null? args-list)
(error "No method for these types" (list op (map type-tag args)))
(let ((proc (get op (map type-tag (car args-list))))
(args-contents (map contents (car args-list))))
(if (procedure? proc)
(drop (apply proc args-contents))
(try-args (cdr args-list))))))
(define (coerce-to-arg arg)
; (display "COERCE-TO-ARG ") (display arg) (newline)
(coerce-args (type-tag arg) args))
(try-args (cons args (map coerce-to-arg args))))
(assert (equ? (add (make-rational 1 3)
(make-complex-from-real-imag 3 0))
(make-rational 10 3)) #t)
(assert (add (make-rational 6 3)
(make-complex-from-real-imag 3 0))
(make-scheme-number 5))
(assert (add (make-rational 6 3)
(make-complex-from-real-imag 3 0))
5)
(display "\nex-2.86 - generic complex numbers\n")
; All the procedures that are used by the complex packages would also have to
; use the generic procedures. For example, we cannot use *, -, /, +, and have
; to replace them with their generic counter-part. We then also have to
; implement sine and cosine. I have skipped sin and cos, but handle atan and
; sqrt, so the following works.
(define cr (make-complex-from-real-imag (make-rational 1 2)
(make-rational 1 2)))
(display (add cr cr)) (newline)
(display (mul cr cr)) (newline)
(display "\nexample - symbolic algebra\n")
(define (install-polynomial-package)
;; internal procedures
;; representation of poly
(define (make-poly variable term-list)
(cons variable term-list))
(define (variable p) (car p))
(define (term-list p) (cdr p))
;; procedures same-variable? and variable? from section 2.3.2
(define (variable? x) (symbol? x))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
;; representation of terms and term lists
(define (adjoin-term term term-list)
(if (=zero? (coeff term))
term-list
(cons term term-list)))
(define (the-empty-termlist) '())
(define (first-term term-list) (car term-list))
(define (rest-terms term-list) (cdr term-list))
(define (empty-termlist? term-list) (null? term-list))
(define (make-term order coeff) (list order coeff))
(define (order term) (car term))
(define (coeff term) (cadr term))
(define (add-terms L1 L2)
(cond ((empty-termlist? L1) L2)
((empty-termlist? L2) L1)
(else
(let ((t1 (first-term L1)) (t2 (first-term L2)))
(cond ((> (order t1) (order t2))
(adjoin-term
t1 (add-terms (rest-terms L1) L2)))
((< (order t1) (order t2))
(adjoin-term
t2 (add-terms L1 (rest-terms L2))))
(else
(adjoin-term
(make-term (order t1)
(add (coeff t1) (coeff t2)))
(add-terms (rest-terms L1)
(rest-terms L2)))))))))
(define (add-poly p1 p2)
(if (same-variable? (variable p1) (variable p2))
(make-poly (variable p1)
(add-terms (term-list p1)
(term-list p2)))
(error "Polys not in same var -- ADD-POLY"
(list p1 p2))))
(define (negate-term term)
(make-term (order term) (negate (coeff term))))
(define (negate-terms terms)
(map negate-term terms))
(define (sub-poly p1 p2)
(if (same-variable? (variable p1) (variable p2))
(make-poly (variable p1)
(add-terms (term-list p1)
(negate-terms (term-list p2))))
(error "Polys not in same var -- ADD-POLY"
(list p1 p2))))
(define (mul-terms L1 L2)
(if (empty-termlist? L1)
(the-empty-termlist)
(add-terms (mul-term-by-all-terms (first-term L1) L2)
(mul-terms (rest-terms L1) L2))))
(define (mul-term-by-all-terms t1 L)
(if (empty-termlist? L)
(the-empty-termlist)
(let ((t2 (first-term L)))
(adjoin-term
(make-term (+ (order t1) (order t2))
(mul (coeff t1) (coeff t2)))
(mul-term-by-all-terms t1 (rest-terms L))))))
(define (mul-poly p1 p2)
(if (same-variable? (variable p1) (variable p2))
(make-poly (variable p1)
(mul-terms (term-list p1)
(term-list p2)))
(error "Polys not in same var -- MUL-POLY"
(list p1 p2))))
(define (=zero?-poly p)
(define (=zero?-terms terms)
(cond
((empty-termlist? terms) #t)
((not (=zero? (coeff (first-term terms)))) #f)
(else (=zero?-terms (rest-terms terms)))))
(=zero?-terms (term-list p)))
;; interface to rest of the system
(define (tag p) (attach-tag 'polynomial p))
(put 'add '(polynomial polynomial)
(lambda (p1 p2) (tag (add-poly p1 p2))))
(put 'mul '(polynomial polynomial)
(lambda (p1 p2) (tag (mul-poly p1 p2))))
(put 'sub '(polynomial polynomial)
(lambda (p1 p2) (tag (sub-poly p1 p2))))
(put '=zero? '(polynomial) =zero?-poly)
(put 'make 'polynomial
(lambda (var terms) (tag (make-poly var terms))))
(display "[install-polynomial-package]\n")
'done)
(install-polynomial-package)
(define (make-poly var terms)
((get 'make 'polynomial) var terms))
(define p (make-poly 'x '((100 2) (1 2))))
;(display p)
(assert (mul p p)
(make-poly 'x '((200 4) (101 8) (2 4))))
(display "\nex-2.87 - =zero?\n")
(assert (=zero? p) #f)
(assert #t
(=zero? (make-poly 'x (list
(list 10 (make-rational 0 10))
(list 5 (make-complex-from-real-imag 0 0))
(list 1 0)))))
(define px p)
(define py (make-poly 'y (list (list 3 px))))
(display (add py py))
(newline)
(display "\nex-2.88 - sub\n")
; Implement via negate procedure
(assert (negate (make-scheme-number -3)) 3)
(assert (negate (make-rational -1 3))
(make-rational 1 3))
(assert (make-complex-from-real-imag 2 4)
(negate (make-complex-from-real-imag -2 -4)))
(define p1 (make-poly 'x (list (list 5 4) (list 2 1))))
(define p2 (make-poly 'x (list (list 5 2) (list 2 (make-rational 1 2)))))
(assert (sub p1 p2) p2)
(display "\nex-2.89 - sparse representation\n")
(define (install-polynomial-package)
;; internal procedures
(define (variable p) (car p))
(define (term-list p) (cdr p))
(define (make-poly variable term-list)
(cons variable term-list))
;; procedures same-variable? and variable? from section 2.3.2
(define (variable? x) (symbol? x))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
;; generic implementations
(define (first-term term-list)
((get 'first-term (type-tag term-list)) (contents term-list)))
(define (adjoin-term term term-list)
((get 'adjoin-term (type-tag term-list)) term (contents term-list)))
;; dense implementations
(define (tag-dense p) (attach-tag 'dense p))
(define (make-poly-dense variable term-list)
(cons variable (tag-dense term-list)))
(define (first-term-dense term-list)
; (display "FIRST-TERM-DENSE ") (display term-list) (newline)
(make-term (- (length term-list) 1)
(car term-list)))
(define (adjoin-term-dense term term-list)
(let ((coeff-term (coeff term))
(order-term (order term))
(length-terms (length term-list)))
(cond
((= order-term length-terms) (tag-dense (cons coeff-term term-list)))
((< order-term length-terms) (error "Cannot adjoin lower-order term to terms"))
(else (tag-dense
(cons
coeff-term
(contents (adjoin-term-dense
(make-term (- order-term 1) 0)
term-list))))))))
(put 'first-term 'dense first-term-dense)
(put 'adjoin-term 'dense adjoin-term-dense)
;; sparse implementations
(define (tag-sparse p) (attach-tag 'sparse p))
(define (make-poly-sparse variable term-list)
(cons variable (tag-sparse term-list)))
(define (adjoin-term-sparse term term-list)
(if (=zero? (coeff term))
(tag-sparse term-list)
(tag-sparse (cons term term-list))))
(define (first-term-sparse term-list) (car term-list))
(put 'first-term 'sparse first-term-sparse)
(put 'adjoin-term 'sparse adjoin-term-sparse)
(define (empty-termlist t)
(attach-tag (type-tag t) '()))
(define (rest-terms term-list)
(let ((term-type (type-tag term-list))
(terms (contents term-list)))
(attach-tag term-type (cdr terms))))
(define (empty-termlist? term-list) (null? (contents term-list)))
(define (make-term order coeff)
(list order coeff))
(define (order term) (car term))
(define (coeff term) (cadr term))
(define (coeffs term-list)
(if (empty-termlist? term-list)
'()
(cons (coeff (first-term term-list))
(coeffs (rest-terms term-list)))))
(define (add-terms L1 L2)
; (display "ADD-TERMS ") (display L1) (display L2) (newline)
(cond ((empty-termlist? L1) L2)
((empty-termlist? L2) L1)
(else
(let ((t1 (first-term L1)) (t2 (first-term L2)))
(cond ((> (order t1) (order t2))
(adjoin-term
t1 (add-terms (rest-terms L1) L2)))
((< (order t1) (order t2))
(adjoin-term
t2 (add-terms L1 (rest-terms L2))))
(else
(adjoin-term
(make-term (order t1)
(add (coeff t1) (coeff t2)))
(add-terms (rest-terms L1)
(rest-terms L2)))))))))
(define (get-coercion-target p1 p2)
(let ((v1 (variable p1))
(v2 (variable p2)))
(cond
; Here we could introduce an ordering where we find the variable with
; the highest ordering and return it, but for testing purposes let's
; just hardcode it.
((and (eq? v1 'y) (eq? v2 'x)) 'x)
((and (eq? v1 'x) (eq? v2 'y)) 'x)
(else (error "Coercion not supported -- GET-COERCION-TARGET"
(list p1 p2))))))
(define (scale-terms factor terms)
; (display "SCALE-TERMS ") (display factor) (display terms) (newline)
(if (empty-termlist? terms)
terms
(let ((term (first-term terms))
(rest (rest-terms terms)))
(adjoin-term (make-term (order term) (mul (coeff term) factor))
(scale-terms factor rest)))))
(put 'mul '(scheme-number polynomial)
(lambda (s p) (tag (make-poly (variable p)
(scale-terms s (term-list p))))))
(define (coerce-terms terms source-var target-var)
; (display "COERCE-TERMS ") (display terms) (newline)
(define (coerce-term t)
; (display "COERCE-TERM ") (display t) (newline)
(let ((c (coeff t))
(o (order t))
(new-poly (tag (make-poly-sparse
source-var
(list (list (order t) 1))))))
; (display "NEW-POLY ") (display new-poly) (newline)
(if (eq? (type-tag c) 'polynomial)
(let ((new-poly (tag (make-poly-sparse source-var (list (list o 1))))))
(scale-terms new-poly (contents (term-list c))))
(let ((sub-poly (tag (make-poly-sparse
source-var
(list (list o c))))))
(cons 'sparse (list (list 0 sub-poly)))))))
(if (empty-termlist? terms)
terms
(add-terms (coerce-term (first-term terms))
(coerce-terms (rest-terms terms) source-var target-var))))
(define (coerce-poly p target-var)
; (display "COERCE-POLY ") (display p) (display " TARGET ") (display target-var) (newline)
(if (eq? (variable p) target-var)
p
(let ((coercion-result (coerce-terms (term-list p) (variable p) target-var)))
; (display "COERCE-POLY-RESULT ") (display coercion-result) (newline)
(make-poly target-var coercion-result))))
(define (coerce-polys p1 p2)
; (display "COERCE-POLYS ") (display p1) (display p2) (newline)
(let ((coercion-target-variable (get-coercion-target p1 p2)))
(if coercion-target-variable
(list (coerce-poly p1 coercion-target-variable)
(coerce-poly p2 coercion-target-variable))
#f)))
(define (add-poly p1 p2)
; (display "ADD-POLY ") (display p1) (display p2) (newline)
(if (same-variable? (variable p1) (variable p2))
(make-poly (variable p1)
(add-terms (term-list p1)
(term-list p2)))
(let ((coerced-polys (coerce-polys p1 p2)))
(if coerced-polys
(add-poly (car coerced-polys) (cadr coerced-polys))
(error "Polys not in same var -- ADD-POLY"
(list p1 p2))))))
(define (sub-poly p1 p2)
(define (negate-term term)
(make-term (order term) (negate (coeff term))))
(if (same-variable? (variable p1) (variable p2))
(make-poly (variable p1)
(add-terms (term-list p1)
(map negate-term (term-list p2))))
(error "Polys not in same var -- ADD-POLY"
(list p1 p2))))
(define (mul-terms L1 L2)
; (display "MUL-TERMS") (display L1) (display L2) (newline)
(if (empty-termlist? L1)
L1
(add-terms (mul-term-by-all-terms (first-term L1) L2)
(mul-terms (rest-terms L1) L2))))
(define (mul-term-by-all-terms t1 L)
; (display "MUL-TERM-BY-ALL-TERMS ") (display t1) (display L) (newline)
(if (empty-termlist? L)
L
(let ((t2 (first-term L)))
; (display "T1 ") (display t1) (display " T2 ") (display t2) (newline)
(adjoin-term
(make-term (+ (order t1) (order t2))
(mul (coeff t1) (coeff t2)))
(mul-term-by-all-terms t1 (rest-terms L))))))
(define (mul-poly p1 p2)
; (display "MUL-POLY ") (display p1) (display p2) (newline)
(if (same-variable? (variable p1) (variable p2))
(make-poly (variable p1)
(mul-terms (term-list p1)
(term-list p2)))
(error "Polys not in same var -- MUL-POLY"
(list p1 p2))))
(define (div-poly p1 p2)
(if (same-variable? (variable p1) (variable p2))
(let ((result (div-terms (term-list p1) (term-list p2)))
(var (variable p1)))
(list
(tag (make-poly var (car result)))
(tag (make-poly var (cadr result)))))
(error "Polys not in same var -- MUL-POLY"
(list p1 p2))))
(define (div-terms L1 L2)
; (display "DIV-TERMS ") (display L1) (display L2) (newline)
(define (negate-term t)
(make-term (order t) (negate (coeff t))))
(define (negate-terms terms)
(let ((term-type (type-tag terms))
(term-list (contents terms)))
(cons term-type (map negate-term term-list))))
(if (empty-termlist? L1)
(list L1 L1)
(let ((t1 (first-term L1)) ; dividend
(t2 (first-term L2))) ; divisor
(if (> (order t2) (order t1))
(list (empty-termlist L2) L1)
(let ((new-c (div (coeff t1) (coeff t2)))
(new-o (- (order t1) (order t2)))
(new-term (make-term (- (order t1) (order t2))
(div (coeff t1) (coeff t2)))))
(let ((new-dividend (add-terms
L1
(negate-terms
(mul-terms
(adjoin-term new-term (empty-termlist L1))
L2)))))
(let ((rest-of-result (div-terms new-dividend L2)))
(list (adjoin-term new-term (car rest-of-result))
(cadr rest-of-result)))))))))
(define (=zero?-poly p)
(define (=zero?-terms terms)
(cond
((empty-termlist? terms) #t)
((not (=zero? (coeff (first-term terms)))) #f)
(else (=zero?-terms (rest-terms terms)))))
(=zero?-terms (term-list p)))
(define (gcd-poly p1 p2)
; (display "GCD-POLY") (display p1) (display p2) (newline)
(define (remainder-terms a b)
(cadr (div-terms a b)))
(define (gcd-terms a b)
; (display "GCD-TERMS") (display a) (display b) (newline)
(if (empty-termlist? b)
a
(gcd-terms b (remainder-terms a b))))
(if (same-variable? (variable p1) (variable p2))
(make-poly (variable p1)
(gcd-terms (term-list p1)
(term-list p2)))
(error "Polys not in same var -- ADD-POLY"
(list p1 p2))))
(define (remainder-terms-pseudo p q)
(let ((o1 (order (first-term p)))
(o2 (order (first-term q)))
(c (coeff (first-term q))))
(let ((integerizing-factor
(expt c (+ 1 o1 (- o2)))))
(cadr (div-terms (scale-terms integerizing-factor p)
q)))))
(define (gcd-terms-pseudo a b)
; (display "GCD-TERMS-PSEUDO") (display a) (display b) (newline)
(if (empty-termlist? b)
a
(gcd-terms-pseudo b (remainder-terms-pseudo a b))))
; Returns the coefficients for a list of integers.
(define (gcd-list xs)
(cond
((null? xs) 1)
((null? (cdr xs)) (car xs))
(else (gcd-list (cons (gcd (car xs) (cadr xs)) (cddr xs))))))
(define (gcd-poly-pseudo p1 p2)
; (display "GCD-POLY-PSEUDO") (display p1) (display p2) (newline)
(if (same-variable? (variable p1) (variable p2))
(let ((result-terms (gcd-terms-pseudo (term-list p1)
(term-list p2))))
(let ((gcd-result (gcd-list (coeffs result-terms))))
(make-poly (variable p1)
(scale-terms (/ 1 gcd-result) result-terms))))
(error "Polys not in same var -- ADD-POLY"
(list p1 p2))))
(define (reduce-terms a b)
(let ((g (gcd-terms-pseudo a b)))
(let ((gcd-result (gcd-list (coeffs g))))
(let ((g-scaled (scale-terms (/ 1 gcd-result) g)))
(list (car (div-terms a g-scaled)) (car (div-terms b g-scaled)))))))
(define (reduce-poly p1 p2)
; (display "REDUCE-POLY ") (display p1) (display p2) (newline)
(if (same-variable? (variable p1) (variable p2))
(let ((reduced-list (reduce-terms (term-list p1)
(term-list p2))))
(list (tag (make-poly (variable p1) (car reduced-list)))
(tag (make-poly (variable p2) (cadr reduced-list)))))
(error "Polys not in same var -- ADD-POLY"
(list p1 p2))))
;; interface to rest of the system
(define (tag p) (attach-tag 'polynomial p))
(put 'add '(polynomial polynomial)
(lambda (p1 p2) (tag (add-poly p1 p2))))
(put 'mul '(polynomial polynomial)
(lambda (p1 p2) (tag (mul-poly p1 p2))))
(put 'sub '(polynomial polynomial)
(lambda (p1 p2) (tag (sub-poly p1 p2))))
(put 'div '(polynomial polynomial)
(lambda (p1 p2) (div-poly p1 p2)))
(put 'greatest-comond-divisor '(polynomial polynomial)
(lambda (p1 p2) (tag (gcd-poly p1 p2))))
(put 'greatest-comond-divisor-pseudo '(polynomial polynomial)
(lambda (p1 p2) (tag (gcd-poly-pseudo p1 p2))))
(put 'reduce '(polynomial polynomial)
(lambda (p1 p2) (reduce-poly p1 p2)))
(put '=zero? '(polynomial) =zero?-poly)
(put 'make 'poly-sparse
(lambda (var terms) (tag (make-poly-sparse var terms))))
(put 'make 'poly-dense
(lambda (var terms) (tag (make-poly-dense var terms))))
(display "[install-polynomial-package]\n")
'done)
(install-polynomial-package)
(define (make-poly-sparse var terms)
((get 'make 'poly-sparse) var terms))
(define (make-poly-dense var terms)
((get 'make 'poly-dense) var terms))
(define p1 (make-poly-dense 'x (list 5 1)))
(display p1) (newline)
(display (add p1 p1)) (newline)
(assert (add p1 p1) (make-poly-dense 'x (list 10 2)))
(assert (add (make-poly-dense 'x (list 2 2 0 1))
(make-poly-dense 'x (list 1 2 3 2 3 6 6)))
(make-poly-dense 'x (list 1 2 3 4 5 6 7)))
(assert (mul (make-poly-dense 'x (list 1 1))
(make-poly-dense 'x (list 1 1)))
(make-poly-dense 'x (list 1 2 1)))
(display "\nex-2.90 - support sparse and dense polynomials\n")
(define p (make-poly-sparse 'x '((100 2) (1 2))))
(display p) (newline)
(assert (add p p) (make-poly-sparse 'x '((100 4) (1 4))))
(assert (mul p p)
(make-poly-sparse 'x '((200 4) (101 8) (2 4))))
(display "\nex-2.91 - divide\n")
(define p1 (make-poly-sparse 'x '((5 1) (0 -1))))
(define p2 (make-poly-sparse 'x '((2 1) (0 -1))))
(assert (mul p1 p1) (make-poly-sparse 'x '((10 1) (5 -2) (0 1))))
(assert (mul p1 p2) (make-poly-sparse 'x '((7 1) (5 -1) (2 -1) (0 1))))
(let ((result (div p1 p2)))
(assert (car result) (make-poly-sparse 'x '((3 1) (1 1))))
(assert (cadr result) (make-poly-sparse 'x '((1 1) (0 -1)))))
(display "\nex-2.92 - coerce polynomials\n")
(define p1 (make-poly-sparse
'x
(list (list 1 (make-poly-sparse
'y
'((2 1) (0 1)))))))
(define p2 (make-poly-sparse
'y
(list
(list 4 3)
(list 2 (make-poly-sparse 'x '((2 1) (0 8)))))))
(display (add p1 p2)) (newline)
(display "\nex-2.93 - polynomial rationals\n")
(define p1 (make-poly-sparse 'x '((2 1)(0 1))))
(define p2 (make-poly-sparse 'x '((3 1)(0 1))))
(define rf (make-rational p2 p1))
(display rf) (newline)
(display (add rf rf)) (newline)
(display "\nex-2.94 - polynomial gcd\n")
(define (greatest-common-divisor x y) (apply-generic 'greatest-comond-divisor x y))
(define p1 (make-poly-sparse 'x '((4 1) (3 -1) (2 -2) (1 2))))
(define p2 (make-poly-sparse 'x '((3 1) (1 -1))))
(assert (greatest-common-divisor p1 p2)
(make-poly-sparse 'x '((2 -1) (1 1))))
(display "\nex-2.95\n")
(define p1 (make-poly-sparse 'x '((2 1) (1 -2) (0 1))))
(define p2 (make-poly-sparse 'x '((2 11) (0 7))))
(define p3 (make-poly-sparse 'x '((1 13) (0 5))))
(define q1 (mul p1 p2))
(define q2 (mul p1 p3))
(display q1) (newline)
(display q2) (newline)
(display (greatest-common-divisor q1 q2)) (newline)
(display "\nex-2.96 - pseudoremainder and improved GCD\n")
(define (gcd-poly-pseudo x y) (apply-generic 'greatest-comond-divisor-pseudo x y))
(assert (gcd-poly-pseudo q1 q2) p1)
(display "\nex-2.97\n")
(assert (car (reduce q1 q2)) p2)
(assert (cadr (reduce q1 q2)) p3)
(assert (reduce 8 14.242) 'noreduce)
(assert (reduce 6 8) (list 3 4))
(assert (cadr (make-rational q1 q2)) p2)
(define p1 (make-poly-sparse 'x '((1 1)(0 1))))
(define p2 (make-poly-sparse 'x '((3 1)(0 -1))))
(define p3 (make-poly-sparse 'x '((1 1))))
(define p4 (make-poly-sparse 'x '((2 1)(0 -1))))
(define rf1 (make-rational p1 p2))
(define rf2 (make-rational p3 p4))
(display (add rf1 rf2)) (newline)