(load "util.scm") (display "ex-2.17\n") (define (last-pair a) (if (null? (cdr a)) (car a) (last-pair (cdr a)))) (define a (list 1 2 3 4)) (assert (last-pair a) 4) (display "\nex-2.18\n") ; Recursive solution probably less efficient because of calls to append and ; list. (define (reverse l) (if (null? l) l (append (reverse (cdr l)) (list (car l))))) ; Iterative solution. Probably much more efficient. (define (reverse l) (define (list-iter acc l) (if (null? l) acc (list-iter (cons (car l) acc) (cdr l)))) (list-iter (list) l)) (display (reverse a)) (display "\n\nex-2.19\n") (define us-coins (list 50 25 10 5 1)) (define uk-coins (list 100 50 20 10 5 2 1 0.5)) (define no-more? null?) (define first-denomination car) (define except-first-denomination cdr) (define (cc amount coin-values) (cond ((= amount 0) 1) ((or (< amount 0) (no-more? coin-values)) 0) (else (+ (cc amount (except-first-denomination coin-values)) (cc (- amount (first-denomination coin-values)) coin-values))))) (display (cc 100 us-coins)) (newline) ; The order of the values in the list do not change the result because the ; procedure tries all potential combinations of using and not using the coins. (display (cc 100 (reverse us-coins))) (display "\n\nex-2.20\n") ; (define (same-parity? a b) (= (modulo a 2) (modulo b 2))) (define (same-parity x . xs) (define (same-parity-iter parity-first rest) (cond ((null? rest) (list)) ((= parity-first (modulo (car rest) 2)) (cons (car rest) (same-parity-iter parity-first (cdr rest)))) (else (same-parity-iter parity-first (cdr rest))))) (same-parity-iter (modulo x 2) (cons x xs))) (display (same-parity -1 2 3 4 5 6 7)) (newline) (display (same-parity 2 3 -4 5 6 7)) (newline) (display "\nex-2.21\n") (define (square-list items) (if (null? items) nil (cons (square (car items)) (square-list (cdr items))))) (display (square-list a)) (newline) (define (square-list items) (map (lambda (x) (* x x)) items)) (display (square-list a)) (newline) (display "\nex-2.22\n") (define (square-list items) (define (iter things answer) (if (null? things) answer (iter (cdr things) (cons (square (car things)) answer)))) (iter items nil)) ; Louis adds the first element (squared) to the accumulator for each iteration ; step. That means later elements are prepended later, hence the order of the ; list is reversed. (display (square-list a)) (newline) (define (square-list items) (define (iter things answer) (if (null? things) answer (iter (cdr things) (cons answer (square (car things)))))) (iter items nil)) (display (square-list a)) (newline) ; Changing the arguments does not work either, because it results in building a ; reverse list of lists, e.g.: ((((nil 16) 9) 4) 1) ; The only solution would be to use append which is inefficient. (define (square-list items) (define (iter things answer) (if (null? things) answer (iter (cdr things) (append answer (list (square (car things))))))) (iter items nil))) (display (square-list a)) (newline) (display "\nex-2.23") (define (for-each proc xs) (cond ((null? xs) ()) (else (proc (car xs)) (for-each proc (cdr xs))))) (for-each (lambda (x) (newline) (display x)) (list 57 321 88)) (newline)