(load "util.scm") (define (add-rat x y) (make-rat (+ (* (numer x) (denom y)) (* (numer y) (denom x))) (* (denom x) (denom y)))) (define (sub-rat x y) (make-rat (- (* (numer x) (denom y)) (* (numer y) (denom x))) (* (denom x) (denom y)))) (define (mul-rat x y) (make-rat (* (numer x) (numer y)) (* (denom x) (denom y)))) (define (div-rat x y) (make-rat (* (numer x) (denom y)) (* (denom x) (numer y)))) (define (equal-rat? x y) (= (* (numer x) (denom y)) (* (numer y) (denom x)))) (define (make-rat n d) (let ((g (gcd n d))) (cons (/ n g) (/ d g)))) (define (numer x) (car x)) (define (denom x) (cdr x)) (define (print-rat x) (newline) (display (numer x)) (display "/") (display (denom x))) ; Examples ; (define one-half (make-rat 1 2)) ; (print-rat one-half) ; (define one-third (make-rat 1 3)) ; (print-rat (add-rat one-half one-third)) ; (print-rat (mul-rat one-half one-third)) ; (print-rat (add-rat one-third one-third)) (display "ex-2.1") (define (make-rat n d) (let ((g (gcd n d))) (if (< (* n d) 0) (cons (- (abs (/ n g))) (abs (/ d g))) (cons (abs (/ n g)) (abs (/ d g)))))) (print-rat (make-rat 3 9)) (print-rat (make-rat -3 9)) (print-rat (make-rat 3 -9)) (print-rat (make-rat -3 -9)) ; More elegant (but harder to read?) solution (define (make-rat n d) (let ((g ((if (< d 0) - +) (abs (gcd n d))))) (cons (/ n g) (/ d g)))) (display "\n\nex-2.2") (define (make-point x y) (cons x y)) (define (x-point p) (car p)) (define (y-point p) (cdr p)) (define (make-segment a b) (cons a b)) (define (start-segment s) (car s)) (define (end-segment s) (cdr s)) (define (midpoint-segment s) (make-point (average (x-point (start-segment s)) (x-point (end-segment s))) (average (y-point (start-segment s)) (y-point (end-segment s))))) (define (print-point p) (newline) (display "(") (display (x-point p)) (display ", ") (display (y-point p)) (display ")")) (define s (make-segment (make-point 1 2) (make-point 7 4))) (print-point (midpoint-segment s)) (display "\n\nex-2.3\n") ; The first representation takes the two opposite corners of the rectangle. ; This assumes that the rectangle is aligned in parallel to the X and Y axis. ; If we use segments to represent two sides originating from the same point we ; would first have to calculate the length of each of these sides. I am not ; changing the code now but it shows how engineering decisions limit what can ; be accomplished, but also make the problem more trivial. (define (make-rectangle p1 p2) (cons p1 p2)) (define (corner-1-rectangle r) (car r)) (define (corner-2-rectangle r) (cdr r)) (define (x-length-rectangle r) (abs (- (x-point (corner-1-rectangle r)) (x-point (corner-2-rectangle r))))) (define (y-length-rectangle r) (abs (- (y-point (corner-1-rectangle r)) (y-point (corner-2-rectangle r))))) (define (area-rectangle r) (* (x-length-rectangle r) (y-length-rectangle r))) (define (perimeter-rectangle r) (* 2 (+ (x-length-rectangle r) (y-length-rectangle r)))) (define r (make-rectangle (make-point -2 -2) (make-point -8 -10))) (display (area-rectangle r)) (newline) (display (perimeter-rectangle r)) (newline) ; The second representation takes one corner and the size of the rectangle. ; The consequence is that we have to calculate the second point for the ; corner-2 getter. (define (make-rectangle p1 size) (cons p1 size)) (define (corner-1-rectangle r) (car r)) (define (corner-2-rectangle r) (make-point (+ (x-point (car r)) (x-point (cdr r))) (+ (y-point (car r)) (y-point (cdr r))))) ; Our higher level functions still deliver the same result even though the ; underlying presentation of the rectangle is different. (define r (make-rectangle (make-point -2 -2) (make-point -6 -8))) (display (area-rectangle r)) (newline) (display (perimeter-rectangle r)) (newline) (display "\nex-2.4\n") (define (cons x y) (lambda (m) (m x y))) (define (car z) (z (lambda (p q) p))) (define (cdr z) (z (lambda (p q) q))) ; Process with substitution model. (let ((x 1) (y 2)) (car (cons x y)) (car (lambda (m) (m x y))) ((lambda (m) (m x y)) (lambda (p q) p)) ((lambda (p q) p) x y) x) (display (car (cons 1 2))) (newline) (display (cdr (cons 1 2))) (newline) (display "\nex-2.5\n") (define (cons-ari a b) (cond ((and (>= a 0) (>= b 0)) (* (expt 2 a) (expt 3 b))) (else (error "Negative integers not allowed" a b)))) (define (count-factor n f) (if (and (> n 0) (= (remainder n f) 0)) (+ 1 (count-factor (/ n f) f)) 0)) (define (car-ari p) (count-factor p 2)) (define (cdr-ari p) (count-factor p 3)) (define p (cons-ari 13 3)) (display (car-ari p)) (newline) (display (cdr-ari p)) (newline) (display "\nex-2.6\n") (define zero (lambda (f) (lambda (x) x))) (define one (lambda (f) (lambda (x) (f x)))) (define two (lambda (f) (lambda (x) (f (f x))))) (define (add-1 n) (lambda (f) (lambda (x) (f ((n f) x))))) (display (((add-1 zero) inc) 0)) (newline) (display (((add-1 one) inc) 0)) (newline) (display (((add-1 (add-1 two)) inc) 0)) (newline) (define (add-church n m) (lambda (f) (lambda (x) ((n f) ((m f) x))))) (define (mul-church n m) (lambda (f) (lambda (x) ((n (m f)) x)))) (define church-five (add-1 (add-church two two))) (display (((add-church church-five two) inc) 0)) (newline) (display (((mul-church church-five two) inc) 0)) (newline)