(load "util.scm") (load "misc/amb.scm") (define (require p) (if (not p) (amb))) (define (an-element-of items) (require (not (null? items))) (amb (car items) (an-element-of (cdr items)))) (define (an-integer-starting-from n) (amb n (an-integer-starting-from (+ n 1)))) (display "\nex-4.35 - an-integer-between\n") (define (an-integer-between a b) (require (<= a b)) (amb a (an-integer-between (+ a 1) b))) (define (a-pythagorean-triple-between low high) (let ((i (an-integer-between low high))) (let ((j (an-integer-between i high))) (let ((k (an-integer-between j high))) (require (= (+ (* i i) (* j j)) (* k k))) (list i j k))))) (display "[done]\n") (display "\nex-4.36 - all-pythagorean-triples\n") ; If we replace an-integer-between with an-integer-starting-from the variables ; i and j will stay at their initial value 1 while k will increment endlessly. ; Hence, only triplets of the form (1 1 n) will be generated. (define (all-pythagorean-triples) (let ((i (an-integer-starting-from 1))) (let ((j (an-integer-starting-from i))) (let ((k (an-integer-starting-from j))) (require (= (+ (* i i) (* j j)) (* k k))) (list i j k))))) (define (all-pythagorean-triples) (let ((k (an-integer-starting-from 1))) (let ((i (an-integer-between 1 k))) (let ((j (an-integer-between i k))) (require (= (+ (* i i) (* j j)) (* k k))) (list i j k))))) ; Note: It would be more efficient to choose to integers and then calculate if ; (+ (* i i) (* j j)) is a perfect square. (display "[done]\n") (display "\nex-4.37 - more-efficient-pythagorean-triples\n") (define (a-pythagorean-triple-between low high) (let ((i (an-integer-between low high)) (hsq (* high high))) (let ((j (an-integer-between i high))) (let ((ksq (+ (* i i) (* j j)))) (require (>= hsq ksq)) (let ((k (sqrt ksq))) (require (integer? k)) (list i j k)))))) ; This implementation uses my note from the previous exercises. Computing sqrt ; and checking for integer is faster ultimately, because the majority of ; combinations are not solutions. (display "[answered]\n") (display "\nex-4.38 - multiple-dwelling\n") (define (distinct? items) (cond ((null? items) true) ((null? (cdr items)) true) ((member (car items) (cdr items)) false) (else (distinct? (cdr items))))) (define (multiple-dwelling) (let ((baker (amb 1 2 3 4 5)) (cooper (amb 1 2 3 4 5)) (fletcher (amb 1 2 3 4 5)) (miller (amb 1 2 3 4 5)) (smith (amb 1 2 3 4 5))) (require (distinct? (list baker cooper fletcher miller smith))) (require (not (= baker 5))) (require (not (= cooper 1))) (require (not (= fletcher 5))) (require (not (= fletcher 1))) (require (> miller cooper)) (require (not (= (abs (- smith fletcher)) 1))) ; adjacent floors constraint (require (not (= (abs (- fletcher cooper)) 1))) (list (list 'baker baker) (list 'cooper cooper) (list 'fletcher fletcher) (list 'miller miller) (list 'smith smith)))) (my-assert (multiple-dwelling) '((baker 3) (cooper 2) (fletcher 4) (miller 5) (smith 1))) (display "\nex-4.39 - multiple-dwelling-ordering\n") ; The ordering does not matter because the interpreter first evaluates all ambs ; and then runs the checks. The interpreter will check all combinations even if ; they cannot yield a possible solution, such as (fletcher 1). To avoid this one ; would have to interleave the am expression and the checks. (display "[answered]\n") (define (repeat proc n) (if (= n 0) 't (begin (proc) (repeat proc (- n 1))))) (let ((start-time (runtime))) (repeat multiple-dwelling 10) (display "[default = ") (display (- (runtime) start-time)) (display "]\n")) (display "\nex-4.40 - multiple-dwelling-improved\n") (define (multiple-dwelling) (let ((baker (amb 1 2 3 4 5))) (require (not (= baker 5))) (let ((cooper (amb 1 2 3 4 5))) (require (distinct? (list baker cooper))) (require (not (= baker cooper))) (require (not (= cooper 1))) (let ((fletcher (amb 1 2 3 4 5))) (require (distinct? (list baker cooper fletcher))) (require (not (= cooper fletcher))) (require (not (= fletcher 5))) (require (not (= fletcher 1))) (let ((miller (amb 1 2 3 4 5))) (require (distinct? (list baker cooper fletcher miller))) (require (not (= fletcher miller))) (require (> miller cooper)) (require (not (= (abs (- fletcher cooper)) 1))) (let ((smith (amb 1 2 3 4 5))) (require (distinct? (list baker cooper fletcher miller smith))) (require (not (= (abs (- smith fletcher)) 1))) (list (list 'baker baker) (list 'cooper cooper) (list 'fletcher fletcher) (list 'miller miller) (list 'smith smith)))))))) (my-assert (multiple-dwelling) '((baker 3) (cooper 2) (fletcher 4) (miller 5) (smith 1))) (let ((start-time (runtime))) (repeat multiple-dwelling 10) (display "[improved = ") (display (- (runtime) start-time)) (display "]\n")) (display "\nex-4.41 - multiple-dwelling-ordinary\n") (display "\nex-4.42\n") ; (display "\nex-4.43\n") ; (display "\nex-4.44 - eight-queens\n")